


Question No : 2 of 26			Marks: 1 (Budgete	d Time 1 Min) 🔳
Reductio ad absurdum law is symbolically denoted as				_
Answer (Please select your correct option)				<u>•</u>
$C \qquad (p \land q) \rightarrow r \equiv p \rightarrow (q \rightarrow r)$ $C \qquad p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$				
$ \begin{array}{c} p \to q \equiv \sim p \vee q \end{array} $				
$C \qquad \qquad b \to d \equiv (b \lor -d) \to c$	correct	made by:	Waqar (siddhu

Qı	uestion No :	f 26 Marks: 1 (Budgeted Time 1	Min)
F	A critical row	that in which premises have truth value T.	_
			√
Aı	nswer (Pleas	select your correct option)	
•	at least o		
	exactly o		
	all		
	c	<u>correct</u>	
	at least tv		
1	C	Made By: Waqar Side	dhu

C	Question No : 4 of 26	Marks: 1 (Budgeted Time 1 Min)	•
	What will be the output of an OR-gate if it has inputs 0 and 1?		[2]
			$\overline{\mathbf{z}}$
Δ	nswer (Please select your correct option)		
	0		
	c <u>correct</u>		
	made By	: Waqar Siddh	1TI

Q	Question No : 5 of 26	Marks: 1 (Budgeted Time 1 Min)
	Let U be the universal set and A is its subset then $A \cup A^{\varepsilon}$ is equal to	
		V
Α	Answer (Please select your correct option)	
	A	
	<u>contrect</u>	
	φ	
	C	
	U	
	made by:	Waqar Siddhu

C	(ues	stion No : 7 of 26 Marks: 1 (Budgeted Time 1 Min)	0
	If A	and S are two reflexive relations then $A\cap S$ will be	
			¥
Α	nsv	ver (Please select your correct option)	
		Symmetric	
	C		
		Reflexive	
	O	<u>correct</u>	
		Transitive	
	0		
		Made By: Wagar Siddh	U

Que	estion No : 8 of 26	Marks: 1 (Budgeted T	Γime 1 Min)
Syn	mmetric and Anti-symmetric relations are		_
			<u> </u>
			▼
Ansv	wer (Please select your correct option)		
66	negative of each other.		
0			
	same.		
0			
	not negative of each other.		
0			
	correct made by: W	agar S	iddhu

Qu	estion No : 9 of 26	Marks: 1 (Budgeted Time 1 Min) 🖃
If	two relations are reflexive then their composition is		4
			7
An	swer (Please select your correct option)		
c	Anti-symmetric		
	Reflexive		
	<u>coitrect</u>		
c	Irreflexive		
c	Symmetric Made By:	: Waqar Sidd	hu

Question No : 10 of 26	Marks: 1 (Budgeted Time 1 Min)
Inverse of relation can be obtained by	
Answer (Please select your correct option)	
changing signs of elements in order pairs.	
changing position of elements in order pairs.	
C C C C C C C C C C C C C C C C C C C	
	correct
taking multiplicative inverse of elements in order pai	
0	
	Made By: Wagar Siddhu

Question No : 11 of 26	Marks: 1 (Budgeted Time 1 Min)
Let $A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$, find which one of the given relations is a function.	
anno (Discoveries to the Company of	
inswer (Please select your correct option)	
$C = \begin{cases} R_1 = ((1,3),(2,2),(3,1)) \end{cases}$	
$R_2 = \{(1,1), (1,2), (2,1)\}$	
C State Control of the Control of th	Waqar Siddhu
A	The entire of the given relations is a function. Represented by the entire of the given relations is a function. Represented by the entire of the given relations is a function. Represented by the entire of the given relations is a function. Represented by the entire of the given relations is a function. Represented by the entire of the given relations is a function. Represented by the entire of the given relations is a function. Represented by the entire of the given relations is a function.

Que	stion No : 12 of 26 Marks: 1 (Budgeted Time 1 Min)	0
If.	$f'(x) = 2x + 1$ and $g(x) = x^2 - 1$ then $f \circ f(x) = 1$	A
		÷1
Ans	ver (Please select your correct option)	1000
25	4x-3	
0		
	$4x^2+1$	_
0	4X +1	
		_
0	4x+3	
	<u>contrect</u>	
	$4x^2-1$	
0	made By: Waqar Siddh	U

	Question No	: 13 of 26 Marks: 1 (Budgeted Time 1 Min)	
	Let f and g b	be the functions defined by $f(x) = 2x + 3$ and $g(x) = 3x + 2$ then composition of f and g is	A
			<u>A</u>
			Y
	Answer (Ple	ease select your correct option)	
	6x + 6		
	0	and a second	
П		<u>correct</u>	
	5x + 5		
	0		
П			
	6x + 7		
П	0		
		made By: Wagar Siddh	U

Question No : 14 of 26	Marks: 1 (Budgeted Time 1 Min)
The negation of $1 \le x \le 10$ is $x \le 1$ or $x \ge 10$ by using:	<u>*</u>
	▼
Answer (Please select your correct option)	
C Distributive Law	
C Inequality Law	
De-Morgan's Law	
None of these Made Ba	y: Waqar Siddhu

(Question No : 15 of 26	Marks: 1 (Budget	ted Time 1 Min)
	If the nth term of a sequence is $a_n = 2(-3)^n + 5^n$ then the term a_1 is		_
			-
Answer (Please select your correct option)			
	-1 C		
	0		
	1		
	c		
		Mr	0-10.
	made By:	waqar	51dd Nu

C	Ques	stion No : 16 of 26 Marks: 1 (Budgeted Time 1 Min)) 🖃
	The	part of definition which can be expressed in terms of smaller versions of itself is called	
L			7
1	Insw	ver (Please select your correct option)	
	0	Recursion COFFECT	
	C	Conclusion	
	0	Base	
		Restriction	
	0	made By: Wagar Sidd	hu


Qu	ion No : 17 of 26	Marks: 1 (Budgeted Time 1 Min)	0
Ti	ower of Hanoi is a puzzle consisting of		
Ans	er (Please select your correct option)		¥
40	2 people		_
(
	3 people		_
C	<u>correct</u>		
	4 people		
C	made B	y: Waqar Siddh	U

(Ques	stion No : 18 of 26 Marks: 1 (Budgeted Time 1 Min)	0
	The	same element can never appear in a set.	
			7
1	Insv	ver (Please select your correct option)	
		twice	
	0	<u>correct</u>	
		once	
	C		
		thrice	
	O		
		made By: Wagar Siddh	U

Qı)uesti	ion No : 19 of 26 Marks: 1 (Budgeted Time 1 Min)	•
I	If (A	$(\cup B) = A$ then	Δ
			V
Answer (Please select your correct option)			
	($(A \cap B) = B^c$	
	0		
		$(A \cap B) = A$	
	0		
	($(A \cap B) = B$	
	0	correct	
		made By: Wagar Siddh	U





