

Que	estion No : 2 of 26 Marks: 1 (Budgeted Tim	e 1 Min) 🔳
If 3	$p \ \& \ q$ are statements, then their disjunction is	A
		7
Ans	swer (Please select your correct option)	
0	p or q	
0	p and q	
c	p and q and p	
o	None of these Made By: Wagar Si	ddhu

C	uestion No : 3 of 26	Marks: 1 (Budgeted Time 1 Min)	0
	The statement of the form p $ ho\sim$ p is		
Δ	nswer (Please select your correct option)		
	Tautology		
	Contradiction		
	Fallacy Made By: U	baqar Siddh	ZI.

Q	ues	tion No : 4 of 26 Marks: 1 (Budgeted Time 1 Min)	
2		ch of the following law is used to show? $\neq q \equiv q \leftrightarrow p$	
Δ.	neu	ver (Please select your correct option)	V
A	IISV		
	0	Implication Law	
		Commutative law	
	C		
		Exportation Law	
)	C		
9	0	None of these	
	O	made By: Wagar Siddh	U

Qı	uestion No : 5 of 26	Marks: 1 (Budgete	ed Time 1 Min) 🔲
A	An argument is a list of statements called premises followed by a statement called the		A
			V
An	nswer (Please select your correct option)		
(Assumptions		
(Hypotheses		
(Conclusion		
(None of these Made By: U	baqar :	Siddhu

Qu	estion No : 6 of 26 Marks: 1 (Budgeted Time 1 Min)	0
A	circuit with two input signals and one output signal is called	
		V
Ans	swer(Please select your correct option)	
	NOT-gate (or inverter)	
	AND- gate	
C		
1000	None of these	
C	made By: Waqar Siddl	174

	Ques	stion No : 7 of 26 Marks: 1 (Budgeted Time 1 Min)	0
	If a	set contains exactly m distinct elements then the set is	À
l	_		$\overline{\mathbf{v}}$
	Ansv	ver (Please select your correct option)	
		Finite	
	0		
		Infinite	
	0		
		None of these	
	0		
		Made By: Waqar Siddk	175
П		maet by. wadar steen	

Qu	stion No : 8 of 26 Marks: 1 (Budgeted Time 1 Min)	•
If	=((5)), then power set of A is equal to	Ξ
Ans	ver (Please select your correct option)	V
c	((Ø,(5)))	
С	(¢,(5))	
С	(Ø,((5)))	
С	((Ø),(5)) Made By: Wagar Siddle	174

Que	estion No : 9 of 26 Marks: 1 (Budgeted Time 1 Min)	•
Th	e power set of a set A is the set of all subsets of A and its denoted by P (A).	
		Y
Ans	wer (Please select your correct option)	
	False	
0		
	True	
0		
	made By: Waqar Siddh	171

Que	estion No : 10 of 26	Marks: 1 (Budgeted Time 1 Min)
Ide	entify the Associative law of union for three sets	<u> </u>
	Discount Discount and the Company of Control	·
Ansv	wer (Please select your correct option)	
0	$A \cup (B \cup C) = (A \cup B) \cup C$	
С	$A\cap (B\cap C)=(A\cap B)\cap C$	
С	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$	
_	None of these	
0	made B;	y: Waqar Siddhu

Ques	stion No : 11 of 26 Marks: 1 (Budgeted Time 1 Min)	0
Sym	metric and Anti-symmetric relations are	A
		¥
Insw	ver (Please select your correct option)	
	negative of each other.	
0		
	same.	
O		
	not negative of each other.	
C		
	Made By: Wagar Siddk	W.
	Sym	Symmetric and Anti-symmetric relations are Answer (Please select your correct option) negative of each other. c not negative of each other.

Question No : 12 of 26	Marks: 1 (Budgeted Time 1 Min)
Inverse of relation can be obtained by	_
Answer (Please select your correct option)	<u> </u>
changing signs of elements in order pairs.	
c	
changing position of elements in order pairs.	
0	
taking multiplicative inverse of elements in order pairs.	
0	
	Made By: Waqar Siddhu

Question No : 13 of 26	Marks: 1 (Budgeted Time 1 Min)
If $f(x) = 2x + 1$ then $f^{-1}(x) =$	A
NOSAS 27 N	
	₩
Answer (Please select your correct option)	-
x-1	
C	
1	
$C = \frac{1}{2}(x-1)$	
$C = \frac{x^2+2}{x^2+2}$	
$C = \frac{1}{2x+1}$	
made E	3y: Waqar Siddhu

Quest	on No : 14 of 26 Marks: 1 (Budgeted Time 1 Min)	
lf f ($(x) = 2x + 1$, $g(x) = x^2 - 1$ then $g \circ f(x) = 1$	[2]
		Y
Answ	r (Please select your correct option)	
c	$4x^2+2$	
С	2x ² -1	
0	Made By: Waqar Siddk	7 1

Question	No : 15 of 26	Marks: 1 (Budgeted Time 1 Min)
Let A =	(x,y,z) and $B = \{a,b,c\}$ be two sets then a function f defined as $\{(x,a),(y,a),(z,a)\}$ is	<u> </u>
Answer (Please select your correct option)	
COnt	0	
C	istant	
One	e-to- one	
Ont	o and constant Made By:	Waqar Siddhu

Q	Question No : 16 of 26	Marks: 1 (Budgete	ed Time 1 Min)
I	If $X = \{a, b, c\}$ and $Y = \{1, 2, 3, 4\}$. Let us define a function $f: X \to Y$ as shown in following figure then the inverse image of 1 is		
	a l		<u> </u>
Aı	Answer (Please select your correct option)		
1			
	0 1,2		
	None of these Made By: W	Jaqar :	Siddhu

Que	estion No : 16 of 26 Marks: 1 (Budgeted Time 1 Min)	0
	•a •b •c •3 •4	
Ans	wer (Please select your correct option)	
0	1	
o	2	
0	1,2	
c	None of these Made By: Wagar Siddh	u

Qu	Question No : 16 of 26 Marks:	1 (Budgeted Time 1 Min)
	•b •2 •3 •4	A.
An	Answer (Please select your correct option)	
c		
c		
c	c 1,2	
c	None of these Made By: Wage	ar Siddhu

Qu	uestion No : 17 of 26	Marks: 1 (Budgete	ed Time 1 Min) 🔲
If	If and g are two one-to-one functions then their composition that is $f \circ g$ is		A
			M
An	nswer (Please select your correct option)		
c	Not One-to-One		
c	On to		
c	One-to-One		
c	One-to-One and Onto Made By: W	dqdr :	Siddhu

Q)ues	estion No : 18 of 26 Marks: 1	(Budgeted Time 1 M	lin) 🔳
	A fi	function whose domain is a subset of the set of natural numbers and range subset of real or complex numbers is called		
				7
A	nsv	wer (Please select your correct option)		
	0	onto mapping		
285	0	into mapping		
2.60	0	sequence		
	0	relation	0-1	_
		made By: Wage	ir 51dd	lhu

Que	stion No : 19 of 26 Marks: 1 (Budgeted Time 1 Min)	•
Let	f is defined recursively by $f(0) = 3$, $f(n+1) = 2f(n) + 3$ then $f(1) = 3$	Ξ
		¥
Ansv	wer (Please select your correct option)	
c	9	
С	10	
c	18	
С	21 Made By: Wagar Siddle	171

Que	estion No : 20 of 26	Marks: 1 (Budgeted Time 1 Min)
p ×	$\wedge g$ shows	
	THE STATE OF THE S	<u>y</u>
Ansv	wer (Please select your correct option)	
c	Conjunction of p and q	
	Disjunction of p and q	
О		
0	Contingency of p and q	
		made By: Waqar Siddhu

