Ques	on No : 1 of 26 Marks: 1 (Budgeted Time 1 Min)	
7x	s an algebraic term in which 7 is a and x is a	A
Answ	er (Please select your correct option)	100.00
0	erm, expression	
С	Correct Answer Solved By Hadi usmanraj2@gmail.com 03228043306	
С	variable, coefficient	
c	numerical, alphabet Made By: Wagar Siddh	u

Question No : 2 of 26 Marks: 1 (Budgeted Time 1 Min)) 🖃
Which of the following is the pivot element in the second row of the matrix? \[\begin{pmatrix} 1 & 2 & 3 & 4 & 8 \\ 0 & 0 & -3 & 5 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & -3 \end{pmatrix} \]	•
Answer (Please select your correct option)	
Correct Answer Solved By Hadi usmanra[20@gmail.com 03228043306	
made By: Waqar Siddl	hu

Que	estion No : 3 of 26 Marks: 1 (Budgeted Time 1 Min)	
W	hich of the following is true for the matrix $ \begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{pmatrix} ? $	A
		¥
Ans	wer (Please select your correct option)	
0	It is an identity matrix.	
0	It is in reduced echelon form.	
c	It is in echelon form. Correct Answer Solved By Hadi usmanraj 20@gmail.com 03228043306	
	It is a rectangular matrix.	
0	Made By: Waqar Siddh	U

Question No : 4 of 26	Marks: 1 (Budgeted Time 1 Min)
If reduced echelon form of a linear system is $\begin{bmatrix} 1 & 0 & 5 & 5 \\ 0 & 1 & 1 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ when free variable $x_3 = 0$, then which of the following is true for it?	E
	▼
Answer (Please select your correct option)	
The particular solution is (0, 5, 6).	
The particular solution is (6, 5, 0).	
The particular solution is (5, 6, 0).	Correct Answer Solved By Hadi usmanraj20@gmail.com 03228043306
The particular solution is (0, 6, 5). Made B	y: Waqar Siddhu

•	Question No : 5 of 26	Marks: 1 (Budgeted Time 1 Min)
	If $\overset{1}{b} = c_1\overset{1}{u_1} + c_2\overset{1}{u_2}$ and $\overset{1}{a} = d_1\overset{1}{u_1} + d_2\overset{1}{u_2}$ where c_1, c_2, d_1 and d_2 are scalars, then which of the following options is correct?	<u> </u>
		₩
	Answer (Please select your correct option)	
	$C \qquad \text{Only } \stackrel{1}{b} \in Span(\stackrel{1}{u}_1, \stackrel{1}{u}_2).$	
	Only $\overset{\mathrm{I}}{a} \in Span(\overset{\mathrm{I}}{u}_{1},\overset{\mathrm{I}}{u}_{2})$.	
	Both $\overset{\tau}{a},\overset{t}{b}\in Span(\overset{\tau}{u}_1,\overset{t}{u}_2)$.	
	Both $a,b \notin Span(u_1,u_2)$. Correct Answer Solved By Hadi usmanraj 20@mail.com 03228043306 Made By: U	haqar Siddhu

Question No : 6 of 26	Marks: 1 (Budgeted Time 1 Min)	
If a homogeneous system $Ax = 0$ has a trivial solution, then which of the following is (are) the value(s) of the vector x ?		Α
		V
Answer (Please select your correct option)		
c ⁻¹		
	Correct Answer Solved By Hadi usmanraj20@gmail.com 03228043306	
° 2 Made	By: Waqar Siddh	U

Q	luestion No : 7 of 26	Marks: 1 (Budgeted Time 1 Min)	
I	If a homogeneous system $Ax = 0$ has non-trivial solution, then which of the following is true for the system?		
Aı	nswer (Please select your correct option)		
	The system has at least no free variable.		
	The system has at least one free variable. Correct Answer Solved By Hausmanraj 20@gmail.com 03228043306	di	
	The system has at least two free variables.		
	The system has at least three free variables. Made By: W	lagar Siddh	u

Question No: 8	of 26 Marks: 1 (Budgeted Time 1 Min)
If $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_3 \end{bmatrix}$	$\begin{bmatrix} -1 + 6x_3 \\ 3 \\ 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 3 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 6 \\ 0 \\ 1 \end{bmatrix}$ be the general solution of $Ax = b$, then which of the following is parametric equation for the given solution?
	y the state of the
Answer (Please	e select your correct option)
C p = s x +	tu+v
C = p + t	Correct Answer Solved By Hadi usmanraj30@gmail.com 03228043306
v = p + t	•
C = p + 1	made By: Waqar Siddhu

Ques	tion No : 9 of 26	Marks: 1 (Budgeted Time 1 Min)	
If th	ne equation $T(\dot{x})=0$ has only the trivial solution, then which of the following is true for the linear transformation $T:R^{\prime 2}\to R^{\prime 2}$?		4
Ansv	ver (Please select your correct option)		
О	T is one-to-one. Correct Answer Solved By Had usmarnj20@gmail.com 03228043306	í	
С	T is onto.		
С	T is a rotation.		
С	T is a reflection. Made By: W	lagar Siddl	17/

Questi	on No : 10 of 26	Marks: 1 (Budgete	d Time 1 Min)
If line	var transformation $T: \mathbb{R}^n o \mathbb{R}^m$ is transformed into a matrix A , then which of the following is the order of A ?		_
			F
Answe	r (Please select your correct option)		
0	n imes m		
0	n imes m		
C	™×n Correct Answer Solved By Hadi usmanraj20@gmail.com 03228043306		
0	n×n Marida Bara	715 at an at up (254 5 16-5
	made By:	wagar	Juanu

Quest	on No : 11 of 26	Marks: 1 (Budgeted Time 1 Min)
If A	= A^{t} (where A is a square matrix) , then which of the following is the most appropriate option for A ?	
		v
Answe	er (Please select your correct option)	
c	A is an invertible matrix.	
c	A is a singular matrix.	
o	A is a symmetric matrix.	Correct Answer Solved By Hadi usmanraj20@gmail.com 03228043306
o	A is a scalar matrix.	made By: Wagar Siddhu

_

Question No : 12 of 26	Marks: 1 (Budgeted Time 1 Min)
If A is an invertible matrix , then which of the following is true ?	
Answer (Please select your correct option)	
$C (A^{-1})^{-1} = A$	Correct Answer Solved By Hadi usmanraj?@@gmail.com 03228043306
$C (A^{-1})^{-1} = \frac{1}{A}$	
$C (A^{-1})^{-1} = A^{-1}$	
$C = (A^{-1})^{-1} = \det(A)$	made By: Waqar Siddhu

Question No : 13 of 26	Marks: 1 (Budgeted Time 1 Min)
If $A = \begin{bmatrix} 4 & -1 \\ 5 & 3 \end{bmatrix}$, then which of the following is the value of $det(A)$?	
	*
Answer (Please select your correct option)	
c 7	
c -17	
c 17	Correct Answer Solved By Hadi usmanraj20@gmail.com 03228043306
° II Made	By: Waqar Siddhu

Question No : 14 of 26	Marks: 1 (Budgeted Time 1 Min)
If a system of equations is solved using the Jacobi's method, then which of the following is NOT true about the matrix M that is derived from the coefficien	at matrix ?
	₹
Answer (Please select your correct option)	
All of its entries below the diagonal must be zero .	
All of its entries above the diagonal must be zero .	
It may or may not be invertible .	Correct Answer Solved By Hadi usmanraj20@gmail.com 03228043306
It is a non-singular matrix.	· Maranara Calallan
indae by:	: Waqar Siddhu

_

C	Questic	on No : 15 of 26 Marks: 1 (Budgeted Time 1 Min)	
	If the:	matrix $A = \begin{bmatrix} 5 & 4 \\ 3 & 3 \end{bmatrix}$, then which of the following is the most suitable option for it?	A
			~
Α	nswer	r (Please select your correct option)	
	C	t is not strictly diagonally dominant. Correct Answer Solved By Hadi usmanraj20@gmail.com 03228043306	
	C	t is strictly diagonally dominant.	
	C	t is not diagonally dominant.	
	C It	t is diagonally dominant. Made By: Waqar Siddh	u

Que	estion No : 16 of 26 Marks: 1 (Budgeted Time 1 Min)	•
If	$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$, then which of the following is the minor of entry a_{21} ?	4
		V
Ans	swer (Please select your correct option)	
С		
С	Correct Answer Solved By Hadi usmanraj20@gmail.com 03228043306	
С	4	
С	made By: Waqar Siddle	17I

Q	estion No : 17 of 26 Marks: 1 (Budgeted Time 1 Min)	
]	$A = \begin{bmatrix} 4 & 5 \\ 6 & 7 \end{bmatrix}$, then which of the following is the value of C_{21} ?	<u> </u>
		V
А	swer (Please select your correct option)	
	5	
	Correct Answer Solved By Hadi usmarraj20@gmail.com 03228043306	
	6	
	-6 Made By: Waqar Siddh	u

Que	estion No : 18 of 26 Marks: 1 (Budgeted Time 1 Min)	
	the determinant of the matrix $A = \begin{bmatrix} 2 & 3 & 4 \\ 1 & 2 & 2 \\ 3 & 4 & 5 \end{bmatrix}$ is -1 and the matrix B is obtained by adding 2 times of the second row in the first row of the matrix A , then which of the following is true about e matrix B ?	A
Ans	swer (Please select your correct option)	
0	Its determinant is -1. Correct Answer Solved By Hadi usmanraj2@gmail.com 03228043306	
0	Its determinant is 1.	
0	Its determinant can not be evaluated.	
О	The information is not sufficient to calculate the determinant. Made By: Wagar Siddh	u

Que	stion No : 19 of 26 Marks: 1 (Budgeted Time 1 Min)	
If	the matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}$, then which of the following is true about it ?	
		¥
Ans	ver (Please select your correct option)	
С	Its determinant is 0.	
С	Its determinant is 1.	
С	Its determinant is 2. Correct Answer Solved By Hadi usmanraj20@gmail.com 03228043306	
С	Its determinant is 4. Made By: Wagar Siddh	U

Qu	uestion No : 20 of 26	Marks: 1 (Budgeted Time 1 Min)	
If	a set $S = \{ v_1 = (1,2), v_2 = (4,8) \}$, then which of the following is the most appropriate option?		A
			V
Ans	iswer (Please select your correct option)		
c	It is a basis of \mathbb{R}^2 .		
c	It is linearly independent.		
c	It spans R^2 .		
c	It is linearly dependent. Correct Answer Solved By Hadi usmanraj2@gmail.com 03228043306 Wade By: W	iaqar Siddhi	U

