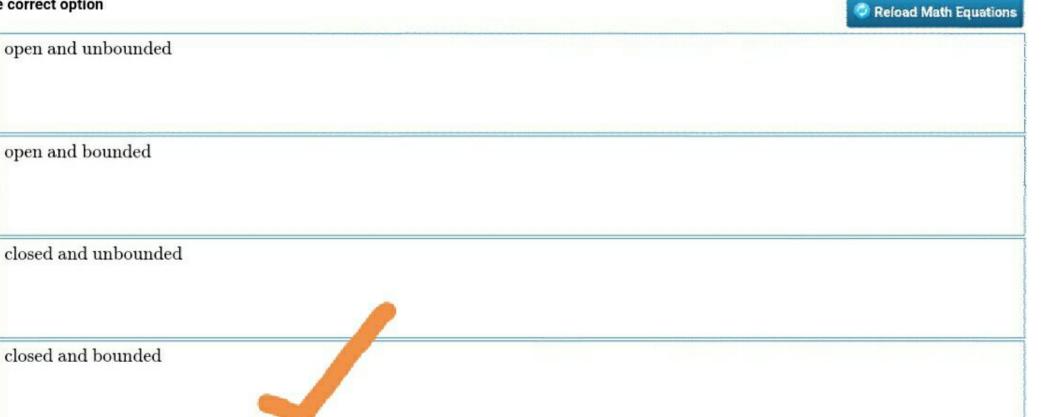
Question # 5 of 10	(Start time: 0	9:59:29 AM, 1	18 February	2021)
--------------------	----------------	---------------	-------------	-------

Total Marks: 1

A compact set in \mathbb{R}^n is -----.



Select the correct option

Question # 7 of 10 (Start time: 10:00:13 AM, 18 February 2021)

Total Marks: 1

In \mathbb{R}^n , an open n - ball of radius r about X_0 is $B_r(X_0) = \{X : |X - X_0| < r\}$, then its closure is -----.

		Reload Math Equations
0	$\{X: X-X_0 =r\}$	
0	$\{X: X-X_0 \leqslant r\}$	
0	$\{X: X-X_0 \geqslant r\}$	

 $\{X:|X-X_0|>r\}$

Question # 10 of 10 (Start time: 10:01:14 AM, 18 February 2021)

Total Marks: 1

In \mathbb{R}^2 , the set $\left\{(x,y):\left(x^2+y^2\leqslant a\right)\;\lor\;\left(x^2+y^2\geqslant b\right),a< b\right\}$ is a region.

Select the correct option

Reload Math Equations

True

False

Question # 9 of 10 (Start time: 10:00:44 AM, 18 February 2021)

Total Marks: 1

If \mathbb{R}^n is connected, such that $\mathbb{R}^n = A \cup B$ with $\bar{A} \cap B = A \cap \bar{B} = \phi$, then - - - - .

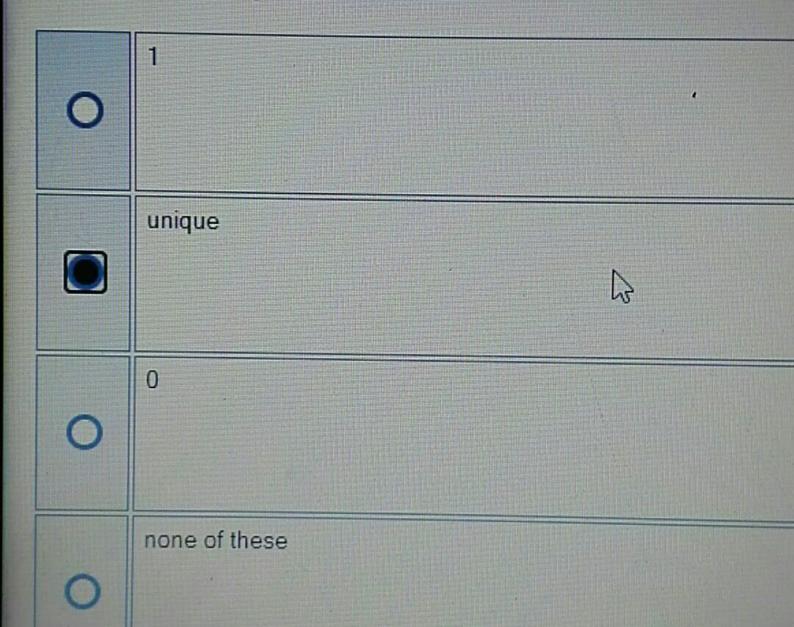
Select the correct option

Reload Math Equations

0	$ar{A}\subset A, ar{B}\subset B$
0	A and B are both open and closed
0	Either $A=\mathbb{R}^n, B=\phi ext{ or } B=\mathbb{R}^n, A=\phi$
0	All above can be concluded

Question # 6 of 10 (Start time: 09:56:07 AM, 18 February 2021)

If $\lim_{X\to X_0} f(X)$ exists, then it is _____.



MTH631:Quiz-2

Question # 3 of 10 (Start time: 09:54:16 AM, 18 February 2021)

Sequence in \mathbb{R}^2 defined as;

$$\{X_r\} = \left\{ \left(\frac{\cos r}{r}, \frac{\sin r}{r} \right) \right\} \text{ converges to ----.}$$

Select the correct option

ı	
	6
Ш	

(1,0)

(0, 1)

(0, 0)

Question # 8 of 10 (Start time: 09:56:56 AM, 18 February 2021)

An open disc: $\{(x,y): x^2 + y^2 < 1\}$ in \mathbb{R}^2 is -----

	diconnected
	disconnected polygonally
9	
0	connected polygonally
	none of these.
O	

Question # 4 of 10 (Start time: 09:54:46 AM, 18 February 2021)

Set of isolated point(s) of the complement of set $\{(x,y): -n < x, y < n, (x,y) \neq (0,0), n \in \mathbb{N}\}$ in \mathbb{R}^2 , is ----.

Select the correct option

0

0

 $\left\{\left(x,y
ight)\in\mathbb{R}^{2}:x=y=\left|n
ight|,n\in\mathbb{N}
ight\}\cup\left\{\left(0,0
ight)
ight\}$

{(0,0)}

 $\left\{ \left(x,y
ight) \in \mathbb{R}^{2}:x=y=\left| n
ight| ,n\in \mathbb{N}
ight\} \cap \left\{ \left(0,0
ight)
ight\}$

 $\left\{ \left(x,y
ight)\in\mathbb{R}^{2}:x=y=\left|n
ight|,n\in\mathbb{N}
ight\}$

In
$$\mathbb{R}^3$$
, the lines $L_1: X=(2,-1,5)+\alpha\,(2,-1,3)$ and $L_2: X=(2,-1,5)+\beta\left(-5,\frac{5}{2},-\frac{15}{2}\right)$ are traversed in ------ directions, where $-\infty<\alpha,\beta<\infty$.

			The state of the s
	same	₩	
0	opposite		
0	perpendicular		
0	oblique		

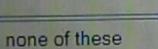
Question # 5 of 10	0 (Start time:	09:55:47 AM.	18 February	2021
Carried and the last	mellik Bernintoraksila limantoksimala	Description Control of Control of Control of	Control for the feet of the control of	Committees in

The function $f\left(x,y\right)=rac{xy}{x^2+y^2}$ is defined everywhere in _____ except at _____

$$R^2$$
, $(1,-1)$

$$R^3$$
, $(1,-1,0)$

$$R^2$$
, $(0,0)$



Question # 7 of 10 (Start time: 09:56:28 AM, 18 February 2021)

If $\phi \neq S \subseteq \mathbb{R}^n$, then the set S is bounded if -----.

$$\sup\left\{|X-Y|:X,Y\in S\right\}=\infty$$

$$\sup\left\{|X-Y|:X,Y\in S\right\}<\infty$$

$$\inf\left\{|X-Y|:X,Y\in S\right\}=\infty$$

$$\inf\left\{|X-Y|:X,Y\in S\right\}<\infty$$

Ques	tion # 9 of 10 (Start time: 09:57:13 AM, 18 February 2021
	space R^n is
Selec	t the correct option
	connected
	not connected
	both a and b
	none of these
0	

Question # 1 of 10 (Start time: 09:53:22 AM, 18 February 2021)

For a non empty closed and bounded subset S in \mathbb{R}^n , if H is the collection open sets such that $S \subset \bigcup \{H : H \in \mathcal{H}\}$, then by Heine - Borel theorem,

Select the correct option

$$S\subset \mathop{\cup}\limits_{\lambda\in\Lambda}\{H_\lambda:H_\lambda\in\mathrm{H}\}$$

$$S\subset \mathop{\cup}\limits_{lpha=1}^{\infty}\{H_lpha:H_lpha\in \mathrm{H}\}$$

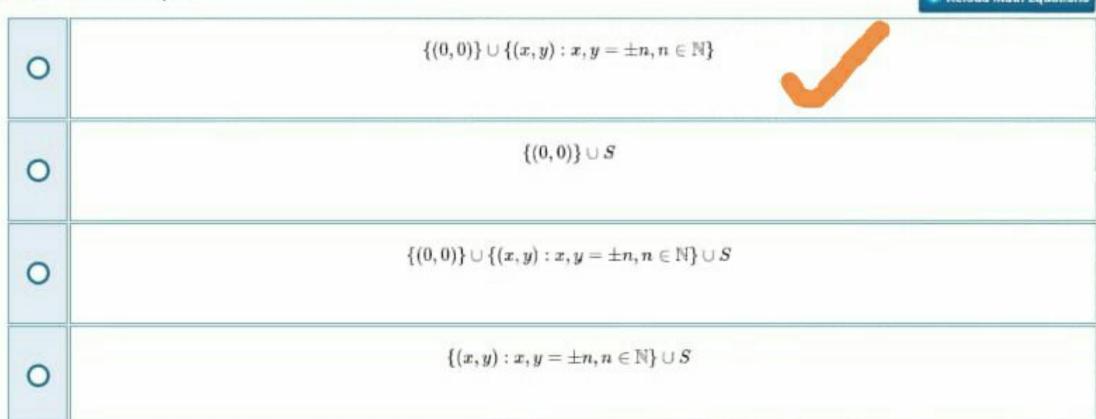
$$S\subset \mathop{\cup}\limits_{lpha=1}^n\{H_lpha:H_lpha\in \mathrm{H}\}$$

All above are equally valid

Question # 7 of 10 (Start time: 09:44:01 AM, 18 February 2021)

Total Marks: 1

Limit points of set $S = \{(x,y): -n < x, y < n, (x,y) \neq (0,0), n \in \mathbb{N}\}$ in $\mathbb{R}^2, ----$.



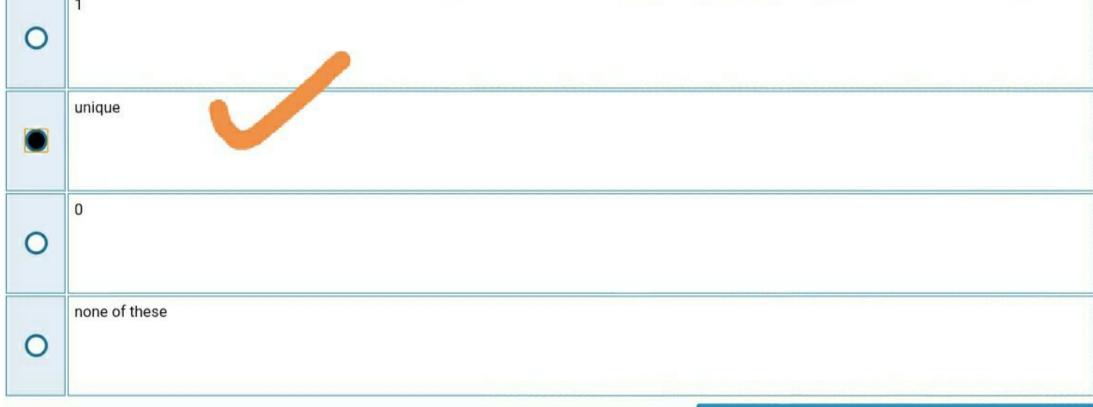
Question # 6 of 10 (Start time: 09:43:25 AM, 18 February 2021)

Total Marks: 1

If $\lim_{X o X_{0}}f\left(X
ight)$ exists, then it is _____.

Select the correct option

Reload Math Equations



Closure of the set $\; \{(x,y): -n < x, y < n, (x,y) \neq (0,0)\,, n \in \mathbb{N} \} \; \text{in} \; \mathbb{R}^2, \text{is} ----.$

Reload Math Equation				
Committee of the Commit		Reload	Math	Fauntions
	-	And Delivery		THE RESERVE AND ADDRESS.

Exterior of the set $\{(x,y): -n < x, y < n, (x,y) \neq (0,0), n \in \mathbb{N}\}\$ in \mathbb{R}^2 , is ----.

Select the correct option

Reload Math Equations

0	$ig\{(x,y)\in\mathbb{R}^2 x < n, y >n,n\in\mathbb{N}ig\}$
0	$ig\{(x,y)\in\mathbb{R}^2 x >n, y < n,n\in\mathbb{N}ig\}$
	$ig\{(x,y)\in\mathbb{R}^2 x >n, y >n,n\in\mathbb{N}ig\}$
0	$ig\{(x,y)\in\mathbb{R}^2 x < n, y < n,n\in\mathbb{N}ig\}$

In \mathbb{R}^n , an open n - ball of radius r about X_0 is $B_r(X_0) = \{X : |X - X_0| < r\}$, which contains -

an ε - neighborhood of each of its points

limit points of each of its points

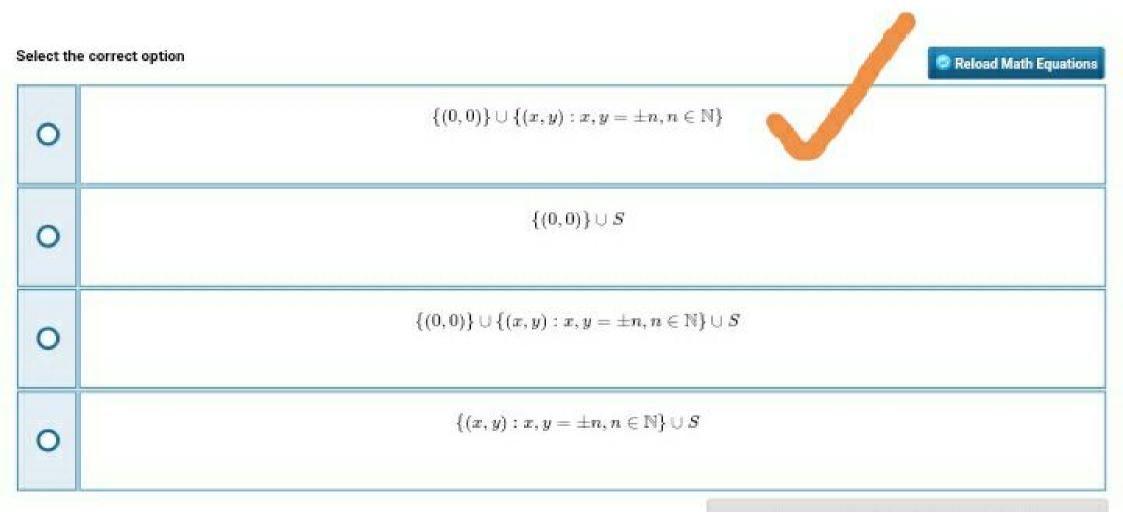
only its isolated point at center X_0

limit points of each of its boundary

Question # 2 of 10 (Start time: 09:04:48 AM, 18 February 2021)

Total Marks: 1

 $\text{Limit points of set } S = \left\{ (x,y) : -n < x, y < n, (x,y) \neq (0,0) \,, n \in \mathbb{N} \right\} \text{ in } \mathbb{R}^2, ----.$



Question # 2 of 10 (Start time: 09:40:30 AM, 18 February 2021)

Total Marks: 1

Which of the following non - empty subset on Real line R is taken as region?

Select the correct option Reload Math Equations Natural numbers N Intervals (open, closed, semi open or closed) Rationals Q or Irrationals Q^c Range of pointwise or uniform real valued convergent sequences

	h	AT	H	63	17:	QL	ıiz-	2
--	---	----	---	----	-----	----	------	---

Question # 10 of 10 (Start time: 09:43:48 PM, 17 February 2021)

The function $f\left(x,y\right)=rac{xy}{x^2+y^2}$ is defined everywhere in _____ except at _____

0	R^2 , $(1,-1)$	
0	R^3 , $(1,-1,0)$	
0	R^2 , $(0,0)$	
0	none of these	

9 of 10 (Start time: 09:43:10 PM, 17 February 2021)

In \mathbb{R}^n , if the line segment: $X = tX_2 + (1-t)X_1$, 0 < t < 1, joining X_1 and X_2 lies in $S_{\varepsilon}(X_0)$, then

correct option

$$|X-X_0|<\varepsilon$$

$$|X-X_0|<1-\varepsilon$$

$$|X - X_0| < t$$

$$|X - X_0| < 1 - t$$

Intervals (0,1) and (1,2) are example of disconnected sets in $\mathbb R$ because ------

$$(0,1)\cap(1,2)=\phi$$

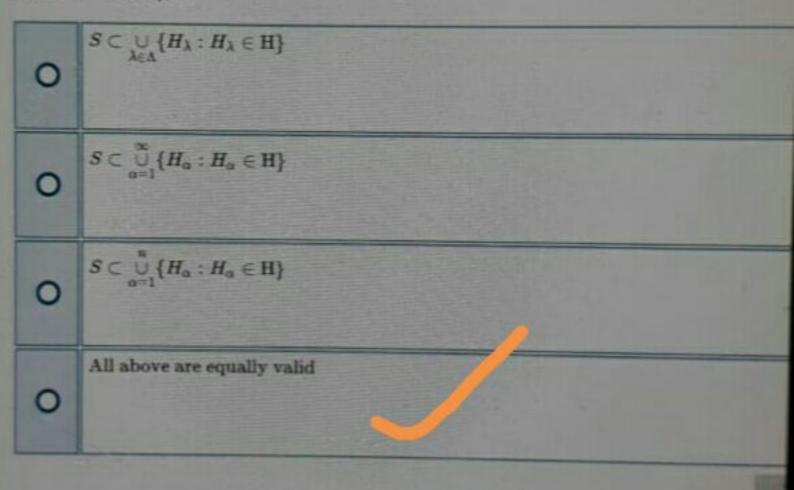
$$\{ \text{closure of} \, (0,1) \} \cap (1,2) = \phi \text{ and} \, \{ \text{closure of} \, (1,2) \} \cap (0,1) = \phi$$

MTH631:Quiz-2				
Question # 7 of 10 (Start time: 09:41:51 PM, 17 February 2021)				
Let f ($(x,y)=rac{xy}{x^2+y^2}$ then the limit of f along the line $y=-x$ as (x,y) approach $(0,0)$ is			
Select th	ne correct option			
	0			
0				
0	undefined			
0	1/2			
-				

-1/2

Question # 6 of 10 (Start time: 09:41:19 PM, 17 February 2021)

For a non empty closed and bounded subset S in \mathbb{R}^n , if H is the collection open sets such $S \subset \bigcup \{H : H \in H\}$, then by Heine - Borel theorem,



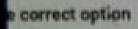
Question # 5 of 10 (Start time: 09:40:39 PM, 17 February 2021)

An open disc: $\{(x,y): x^2+y^2<1\}$ in \mathbb{R}^2 is -----.

0	diconnected
0	disconnected polygonally
0	connected polygonally
0	none of these.

4 of 10 (Start time: 09:40:07 PM, 17 February 2021)

Exterior of the set
$$\{(x,y): -n < x, y < n, (x,y) \neq (0,0), n \in \mathbb{N}\}$$
 in \mathbb{R}^2 , is $----$



$$\left\{(x,y)\in\mathbb{R}^2|\,|x|< n,|y|>n,n\in\mathbb{N}\right\}$$

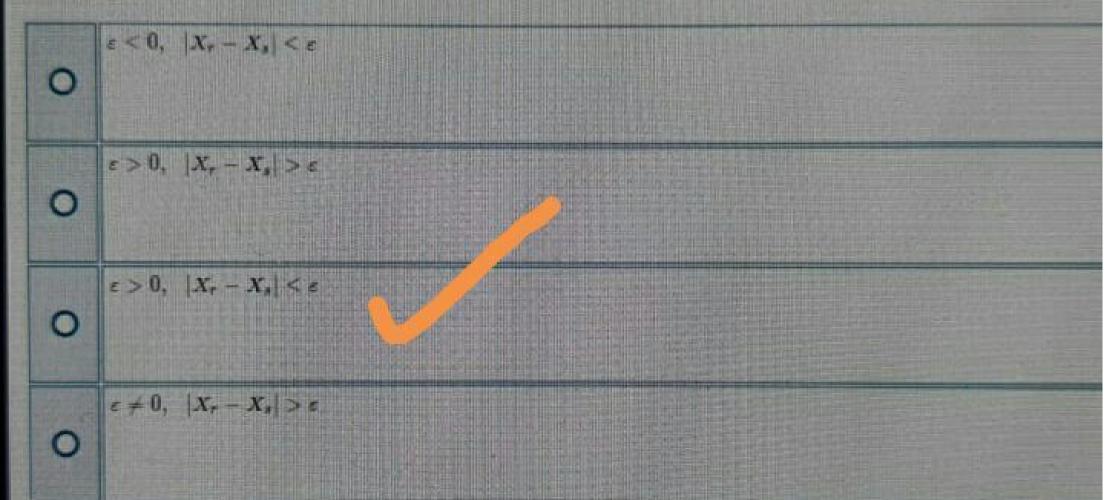
$$\left\{(x,y)\in\mathbb{R}^2|\ |x|>n,|y|< n,n\in\mathbb{N}\right\}$$

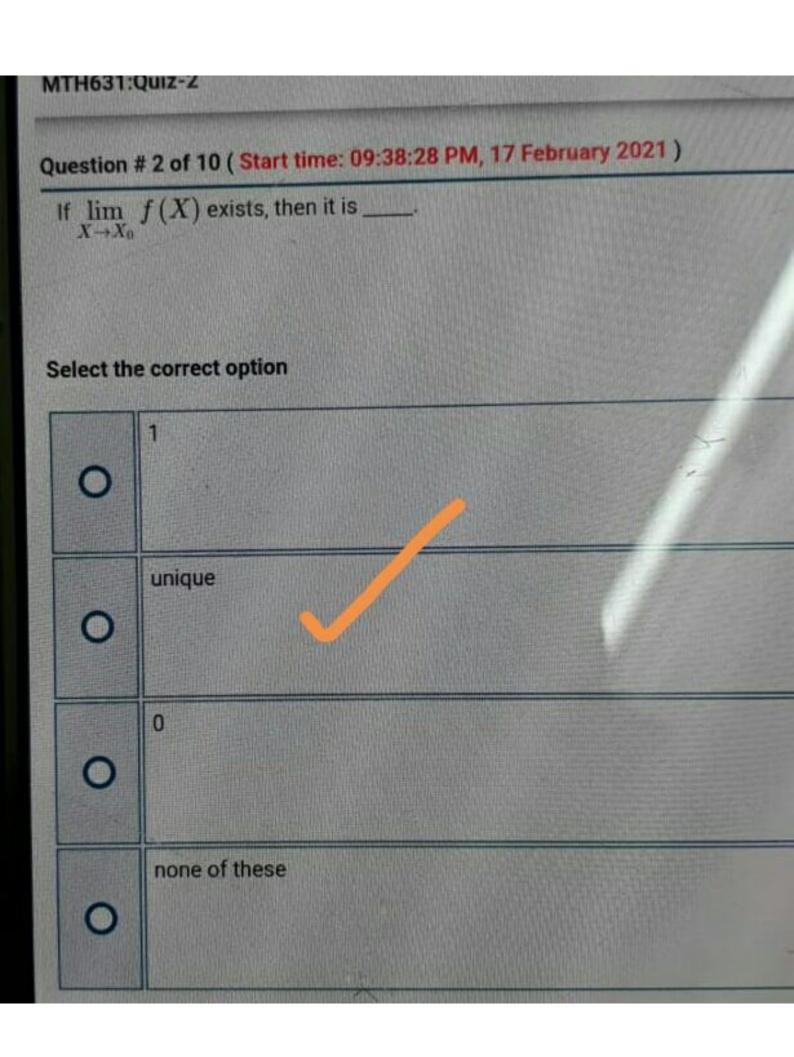
$$\left\{(x,y)\in\mathbb{R}^2|\,|x|>n,|y|>n,n\in\mathbb{N}\right\}$$

$$\left\{(x,y)\in\mathbb{R}^2|\,|x|< n,|y|< n,n\in\mathbb{N}\right\}$$

Question # 3 of 10 (Start time: 09:39:20 PM, 17 February 2021)

A sequence of points $\{X_r\}$ in R^n converges if and only if for each ______ there is an integer K such that _____ if $r,s\geqslant K$.





	MTH631:Quiz-2		
	Question # 1 of 10 (Start time: 09:37:10 PM, 17 February 2021)		
ı	A compact set in R ⁿ is		
H			
	Select the correct option		
	0	open and unbounded	
		open and bounded	
	0		
Ī		closed and unbounded	
	0		
		closed and bounded	
	0		

Closure of the set $\; \{(x,y): -n < x, y < n, (x,y) \neq (0,0)\,, n \in \mathbb{N} \} \; \text{in} \; \mathbb{R}^2, \text{is} ----.$

$$\{(x,y): -n < x, y < n, n \in \mathbb{N}\}$$

$$\{(x,y):-n\leqslant x,y\leqslant n,n\in\mathbb{N}\}$$

$$\{(x,y):(x,y)\neq (0,0)\}$$

$$\left\{ \left(x,y\right):x,y\leqslant n,\left(x,y\right)\neq\left(0,0\right),n\in\mathbb{N}\right\}$$

ion

$$\left\{ (x,y) \in \mathbb{R}^2 | \left| x
ight| < n, \left| y
ight| > n, n \in \mathbb{N}
ight\}$$

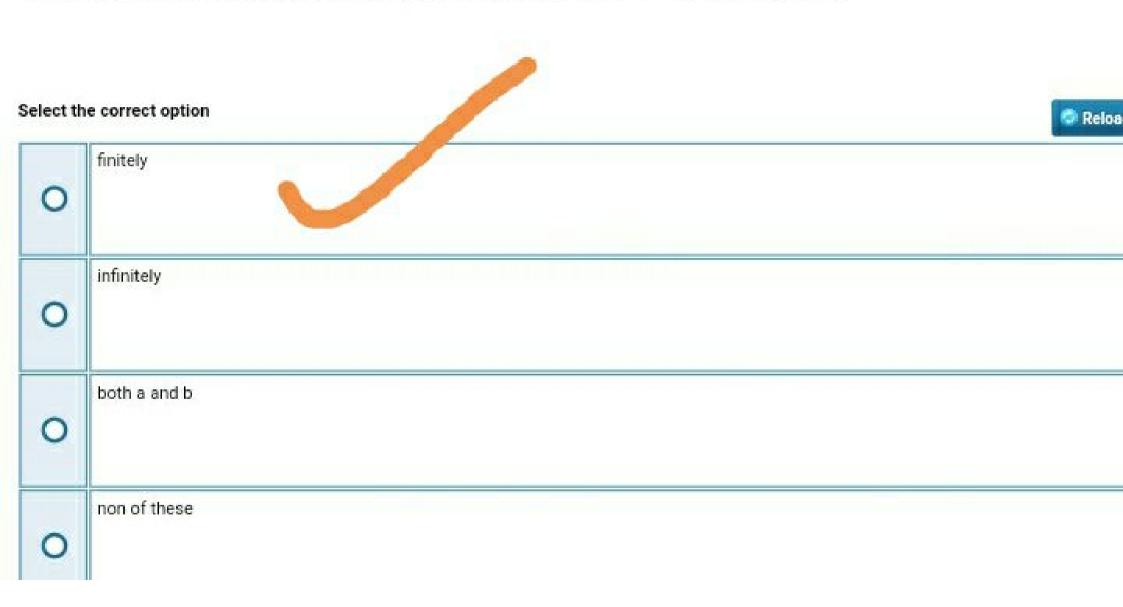
$$\left\{ (x,y) \in \mathbb{R}^2 | \left| x \right| > n, \left| y \right| < n, n \in \mathbb{N}
ight\}$$

$$\left\{(x,y)\in\mathbb{R}^2|\,|x|>n,|y|>n,n\in\mathbb{N}
ight\}$$

$$\left\{ (x,y) \in \mathbb{R}^2 | \left| x \right| < n, \left| y \right| < n, n \in \mathbb{N}
ight\}$$

Question # 9 of 10 (Start time: 09:31:00 PM, 17 February 2021)

If H is an open covering of a compact subset S, then S can be covered by _____ many sets from H.



Set of isolated point(s) of the complement of set $\{(x,y): -n < x, y < n, (x,y) \neq (0,0), n \in \mathbb{N}\}$ in \mathbb{R}^2 , is -

act option

$$\left\{ \left(x,y
ight) \in \mathbb{R}^2 : x=y=\left| n
ight|, n \in \mathbb{N}
ight\} \cup \left\{ \left(0,0
ight)
ight\}$$

$$\{(0,0)\}$$

$$\left\{ \left(x,y
ight) \in \mathbb{R}^2 : x=y=\left|n
ight|, n\in \mathbb{N}
ight\} \cap \left\{ \left(0,0
ight)
ight\}$$

$$\left\{ \left(x,y\right)\in\mathbb{R}^{2}:x=y=\left|n\right|,n\in\mathbb{N}\right\}$$

Question # 9 of 10 (Start time: 09:29:43 PM, 17 February 20		
	The spa	ce R^n is
9	Select th	e correct option
		connected
	0	
		not connected
ı	0	
ı		
		both a and b
ı	0	
ı		
	-	none of these

A set "S" is polygonally connected if, ----- pair of points in S can be connected by a polygonal path lying ----- in "S".

Question # 8 of 10 (Start time: 09:29:10 PM, 17 February 2021)

If $\phi \neq S \subseteq \mathbb{R}^n$, then the set S is bounded if -----.

$$\begin{array}{c|c} \operatorname{sup}\left\{|X-Y|:X,Y\in S\right\} = \infty \\ \\ \operatorname{O} & \operatorname{sup}\left\{|X-Y|:X,Y\in S\right\} < \infty \\ \\ \operatorname{O} & \inf\left\{|X-Y|:X,Y\in S\right\} = \infty \\ \\ \end{array}$$

Question #7 of 10	Start time: 09:28:21	PM, 17 February 2021)
-------------------	----------------------	------------------------

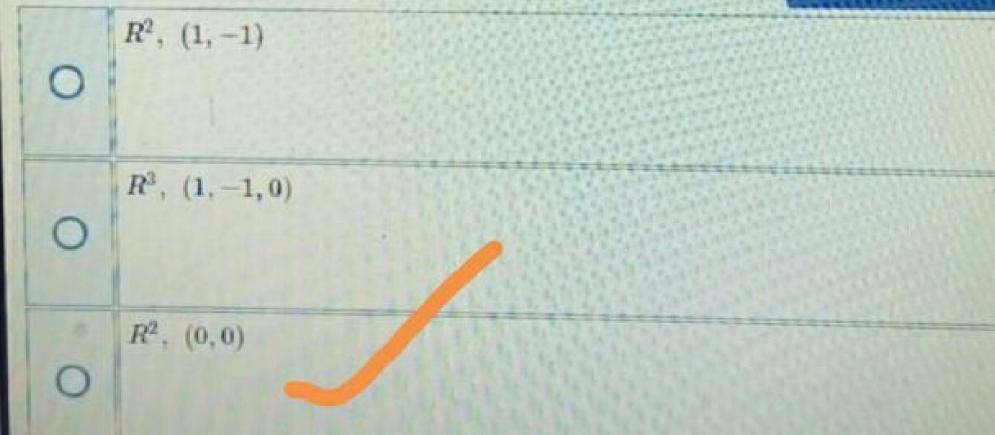
1

The function $f(x,y) = \frac{xy}{x^2 + y^2}$ is defined everywhere in _____ except at _____.

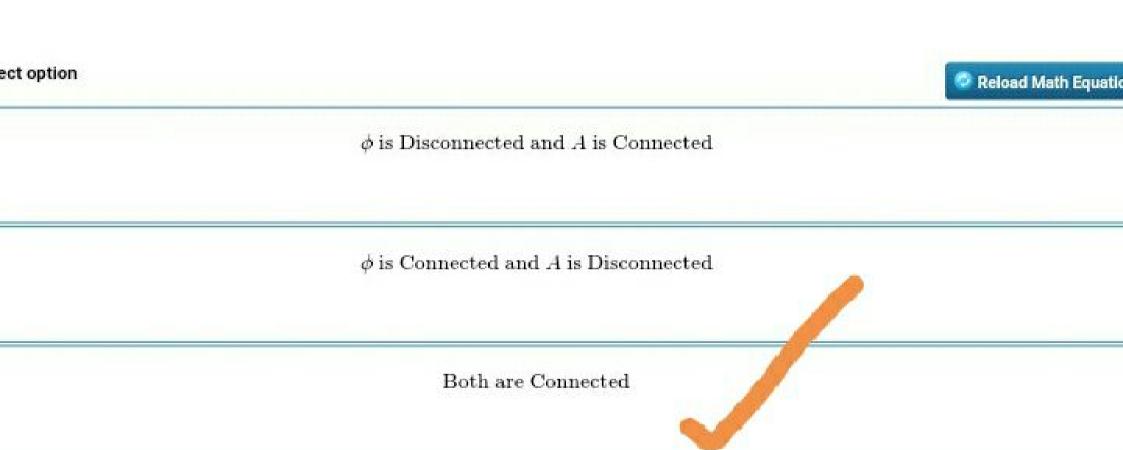
D

Select the correct option

none of these



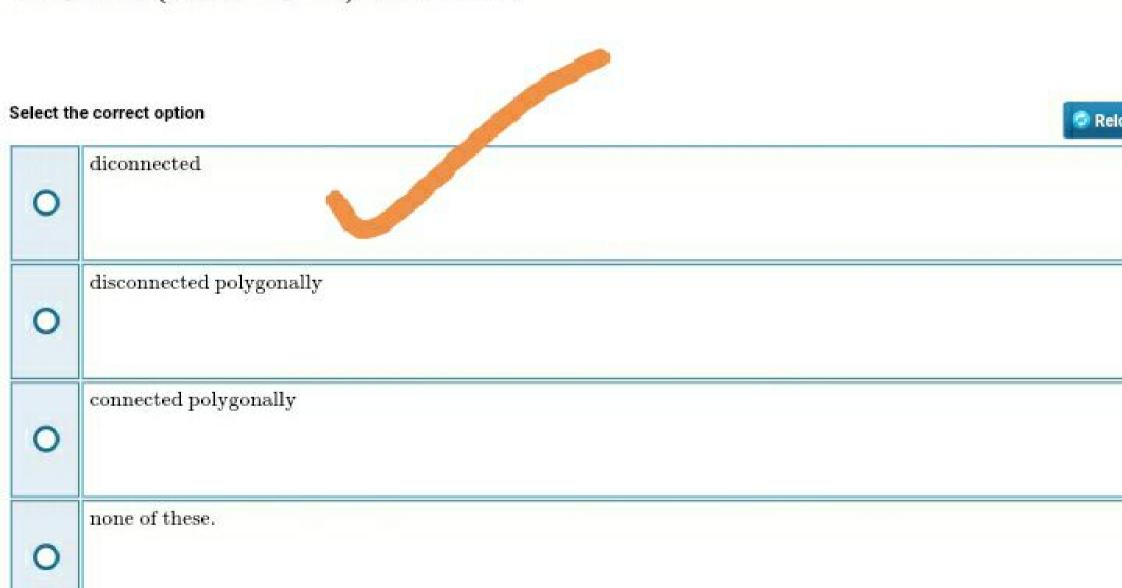
 $\text{In }\mathbb{R}^n, \text{which of the following is true about } \phi = \{\} \text{ and } A = \{(a_1, a_2, \ldots, a_n) \,, a_i \in \mathbb{R}, 1 \leqslant i \leqslant n, i \in \mathbb{N}\}?$



Both are Disconnected

Question # 5 of 10 (Start time: 09:27:50 PM, 17 February 2021)

An open disc: $\{(x,y): x^2 + y^2 < 1\}$ in \mathbb{R}^2 is - - - - .



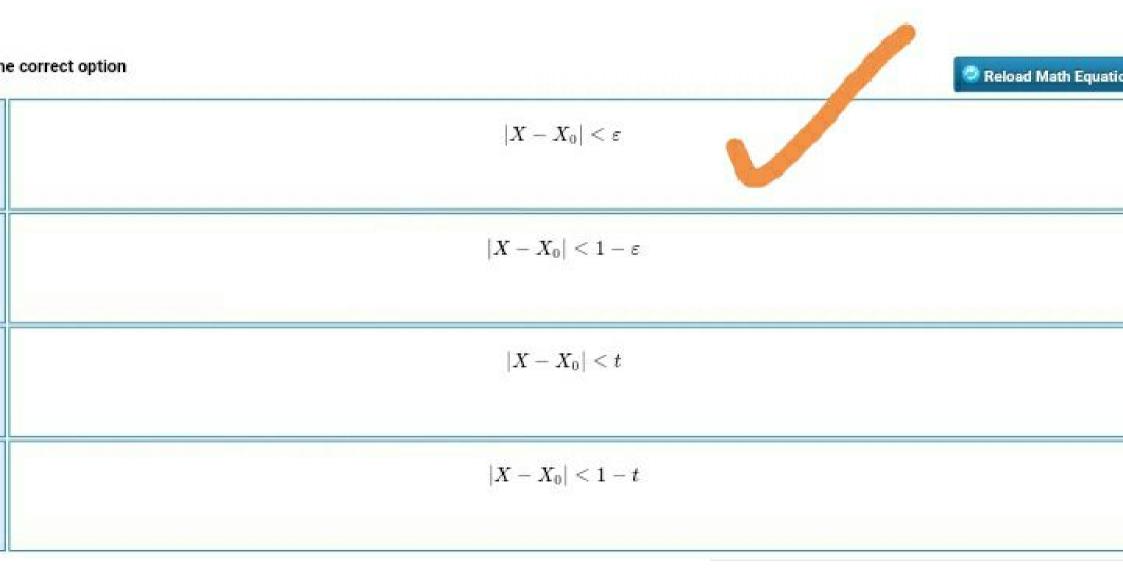
Boundary of the set $\; \{(x,y): -n < x, y < n, (x,y) \neq (0,0) \,, n \in \mathbb{N} \} \; ext{in} \; \mathbb{R}^2, ext{is} ---$

$$\left\{ (x,y) \in \mathbb{R}^2 | x = \pm n, y = \pm n, n \in \mathbb{N} \right\} \cup \left\{ (0,0) \right\}$$

$$ig\{(x,y)\in\mathbb{R}^2|x=\pm n,y=\pm n,n\in\mathbb{N}ig\}$$

$$\{(x,y)\in \mathbb{R}^2|x=\pm n,y=\pm n,n\in \mathbb{N}\}\cap \{(0,0)\}$$

 $\text{In }\mathbb{R}^{n}, \text{ if the line segment: } X=tX_{2}+\left(1-t\right)X_{1}, \text{ }0< t<1, \text{ joining }X_{1} \text{ and }X_{2} \text{ lies in }S_{\varepsilon}\left(X_{0}\right), then---.$



	# 4 of 10 (Start time: 09:26:31 PM, 17 February 2021)	Total Marks: 1
If H is a	n open covering of a compact subset S , then S can be covered by _	many sets from H .
Select the	e correct option	
		Reload Math Equations
0	finitely	
0		
	infinitely	F# 14 18 18 18 18 18 18 18 18 18 18 18 18 18
0		
	both a and b	D
0		
	non of these	

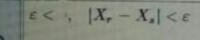
 $\text{Set of isolated point(s) of the complement of set } \left\{ \left(x,y\right):-n < x,y < n, \left(x,y\right) \neq \left(0,0\right), n \in \mathbb{N} \right\} \text{ in } \mathbb{R}^2, \text{is }----.$

elect the correct option	Reload Math Equation
0	$\left\{\left(x,y ight)\in\mathbb{R}^{2}:x=y=\left n ight ,n\in\mathbb{N} ight\}\cup\left\{\left(0,0 ight) ight\}$
0	{(0,0)}
0	$\left\{\left(x,y ight)\in\mathbb{R}^{2}:x=y=\left n ight ,n\in\mathbb{N} ight\}\cap\left\{\left(0,0 ight) ight\}$
0	$ig\{(x,y)\in\mathbb{R}^2:x=y=\left n ight ,n\in\mathbb{N}ig\}$

A sequence c points $\{X_r\}$ in R^n converges if and only if for each _

there is an integer K such that _____ if $r,s\geqslant K$...

Select the con ct option



$$|\varepsilon>$$
 , $|X_r-X_s|>\varepsilon$

$$\varepsilon > |X_r - X_s| < \varepsilon$$

$$arepsilon
eq , |X_r - X_s| > arepsilon$$

In \mathbb{R}^n , which of the following is true about $\phi = \{\}$ and $A = \{(a_1, a_2, \ldots, a_n), a_i \in \mathbb{R}, 1 \leqslant i \leqslant n, i \in \mathbb{N}\}$?

ption

 ϕ is Disconnected and A is Connected

 ϕ is Connected and A is Disconnected

Both are Connected

Both are Disconnected

Limit points of set $S = \{(x, y) : -n < x, y < n, (x, y) \neq (0, 0), n \in \mathbb{N}\}$ in $\mathbb{R}^2, ----$.

ion

$$\{(0,0)\}\cup\{(x,y):x,y=\pm n,n\in\mathbb{N}\}$$

$$\{(0,0)\}\cup S$$

$$\{(0,0)\}\cup\{(x,y):x,y=\pm n,n\in\mathbb{N}\}\cup S$$

$$\{(x,y): x,y=\pm n, n\in \mathbb{N}\}\cup S$$

In \mathbb{R}^n , a function f is differentiable at X_0 , $\Leftrightarrow \exists$ a linear function L in a way that $f(X) - f(X_0)$ can be approximated near X_0 by L satisfying;

Select the correct option

0

Reload Math Equations

$$L\left(XX_{0}\right) =\left(LX\right) \left(LX_{0}\right)$$

$$L\left(rac{X}{X_0}
ight)=rac{LX}{LX_0},\;|X_0|
eq 0, LX_0
eq 0$$

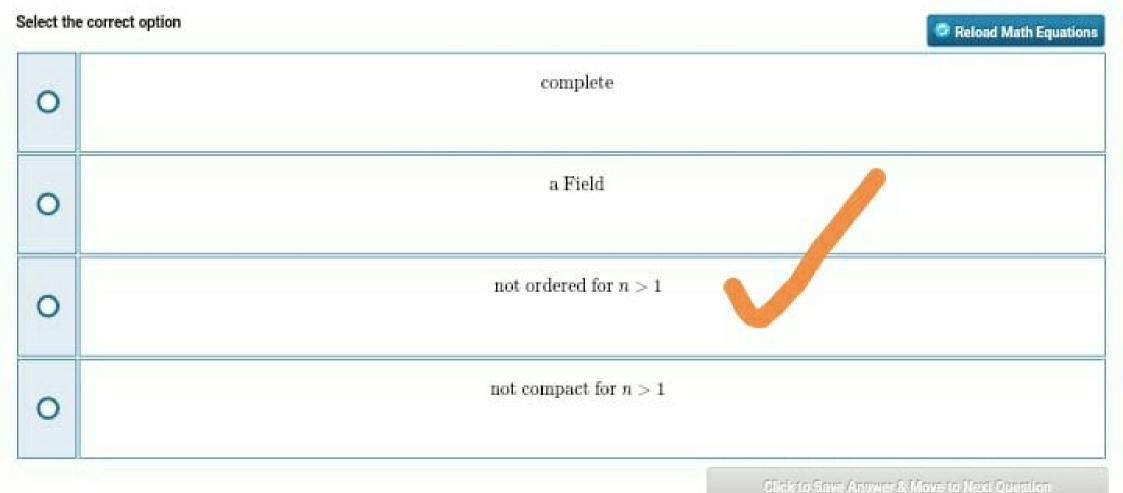
None of the above

Question # 9 of 10 (Start time: 06:15:03 PM, 26 February 2021)

Total Marks: 1

Sec(5)

In \mathbb{R}^n , monotonicity, limits inferior and superior of sequences, and divergence to $\pm \infty$ are undefined for n > 1 because \mathbb{R}^n is - - - - - .



Suppose in \mathbb{R}^2 , f, f_x , f_y and f_{xy} exist on neighborhood N of (x_0, y_0) . Then $f_{yx}(x_0, y_0)$ exists, and $f_{yx}(x_0, y_0) = f_{xy}(x_0, y_0)$ because if f_{xy} is ----.

Select ti	the correct option	Reload Math Equations	
0	bounded		
0	continuous		
0	differntiable		
0	partially differentiable		

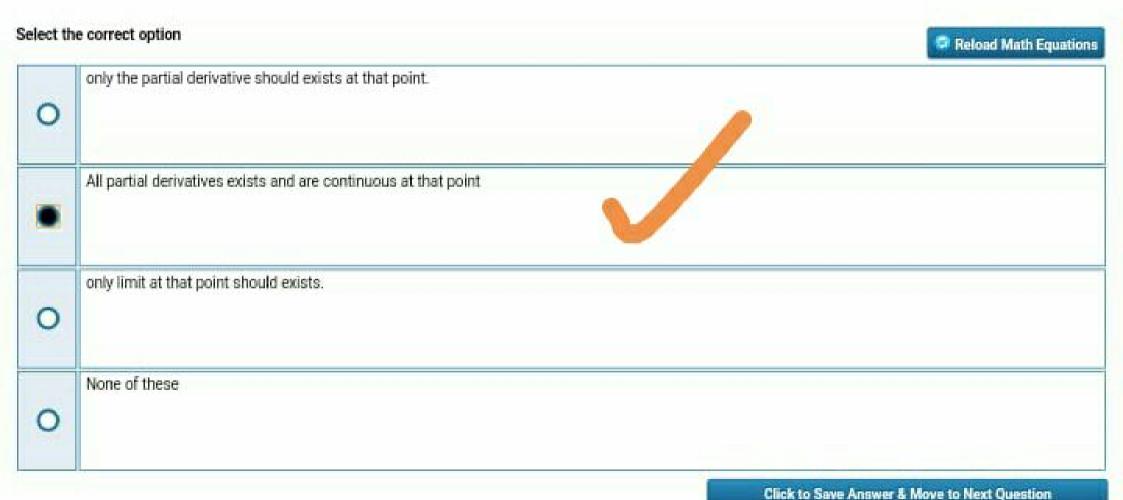
Question # 2 of 10 (Start time: 06:11:26 PM, 26 February 2021)

Total Marks: 1

If f is continuous on a compact set S in \mathbb{R}^n , then f - - - - on S.

Select ti	the correct option	Reload Math Equations
0	attains all its bounds	
0	is also uniformly continuous	
0	is also defined on all the limit points of "S"	
0	All above are equally valid	

A sufficient condition for a function of several variables to be differentiable at point is

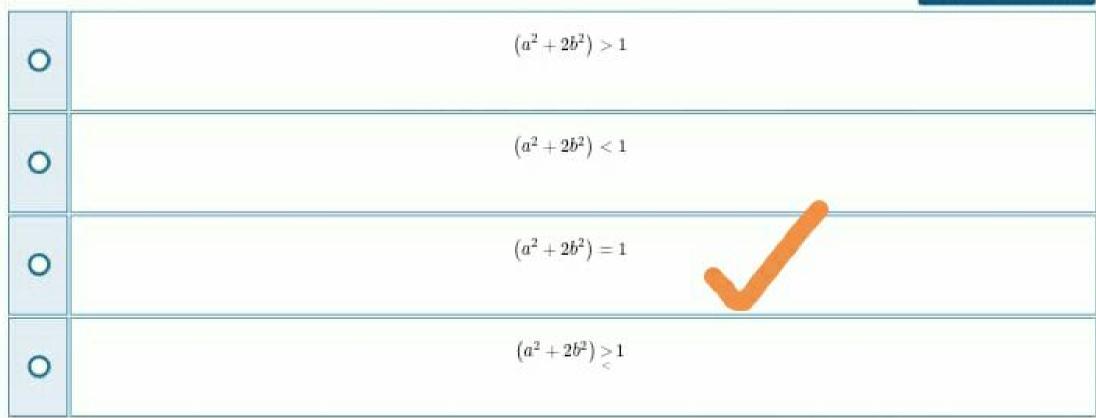


Question # 3 of 10 (Start time: 06:02:18 PM, 26 February 2021)

Total Marks: 1

sec(s)

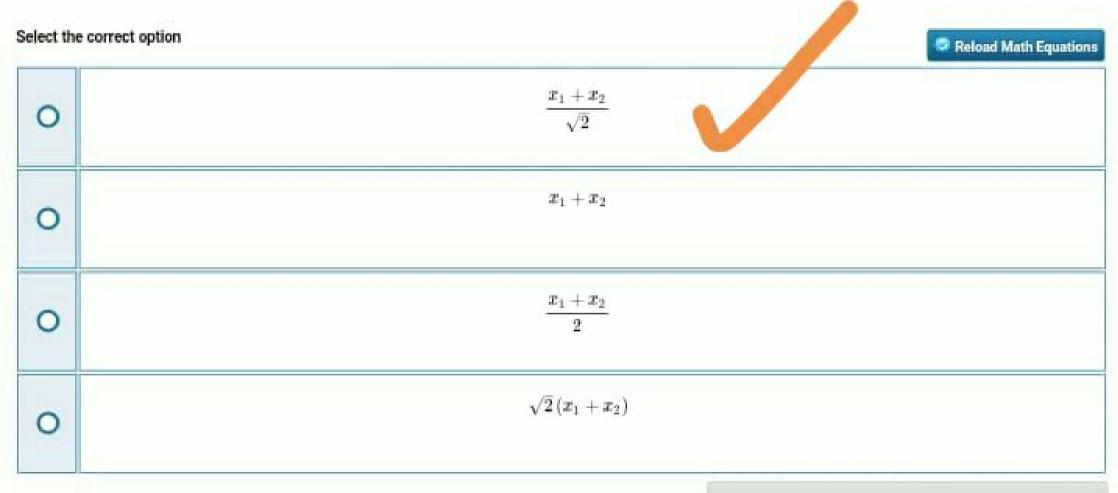
$$\lim_{(x,y)\to(a,b)}\frac{\sin\sqrt{1-x^2-2y^2}}{\sqrt{1-x^2-2y^2}}=1, \text{ if } ----.$$



Question # 4 of 10 (Start time: 06:03:04 PM, 26 February 2021)

Total Marks: 1

$$\operatorname{In} \mathbb{R}^2$$
, $f(X) = |X|^2$ and $\Phi = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$, then $\frac{\partial f(X)}{\partial \Phi} =$



Total Marks: 1

Let f be defined and continuous on a region S in \mathbb{R}^n . Suppose that X_1 and X_2 are in S and $f(X_1) < Y < f(X_2)$.

Then
$$f(X) = Y - \cdots - X$$
 in S .

In R²,
$$\lim_{(x,y)\to(2,2)} \frac{\sin(x-y)}{\sqrt{x-y}} = ----$$

Select the correct option		Reload Math Equations
0	00	
0	1	
0	√2	
0	0	

Question # 10 of 10 (Start time: 05:52:21 PM, 26 February 2021)

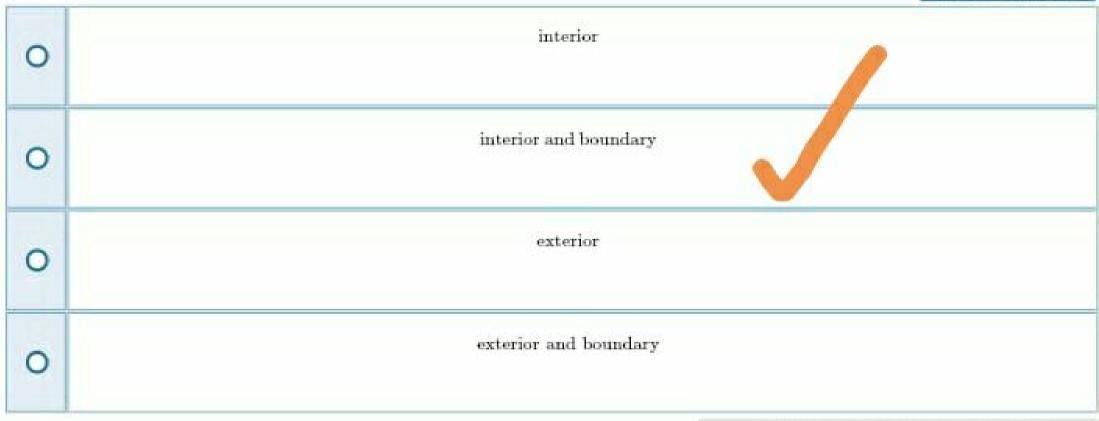
Total Marks: 1

How many third order partial derivatives of $g\left(x,y\right)=xy+x^{2}y^{3}$ exist in \mathbb{R}^{3} ?

Select th	e correct option
0	3
0	
0	
0	9

The domain of the real valued function $f : \mathbb{R}^2 \to \mathbb{R}$ defined and given by;

$$f(X) = rac{\sin\sqrt{1-x^2-2y^2}}{\sqrt{1-x^2-2y^2}}$$
 is ---- of the region by the ellipse $x^2+2y^2=1$.



Question # 5 of 10 (Start time: 05:50:04 PM, 26 February 2021)

Total Marks: 1

If a function f is continuous on a compact set S in \mathbb{R}^n , and $\alpha = \inf_{X \in S} f(X)$, $\beta = \sup_{X \in S} f(X)$, then $f(X_1) = \alpha$ and $f(X_2) = \beta - - - - X_1$ and X_2 in S.



0	The partial derivative is a special case of directional derivative.	
0	For a functions of n variables $f(\mathbf{X})$ the partial derivative with respect to variable	
0	The partial derivative of the function $f(x,y,z)=3xyz+2x^2+z^2$ with respect to third variable is	
0	None of these	

$$\text{In }\mathbb{R}^n,\;f\left(X\right)=\frac{1}{|X-X_0|}, and \lim_{X\to X_0}f\left(X\right)=\infty,\; \text{then } f\left(X\right)>M>0\;\; \Rightarrow \; 0<|X-X_0|<\delta=----.$$

Select the correct option

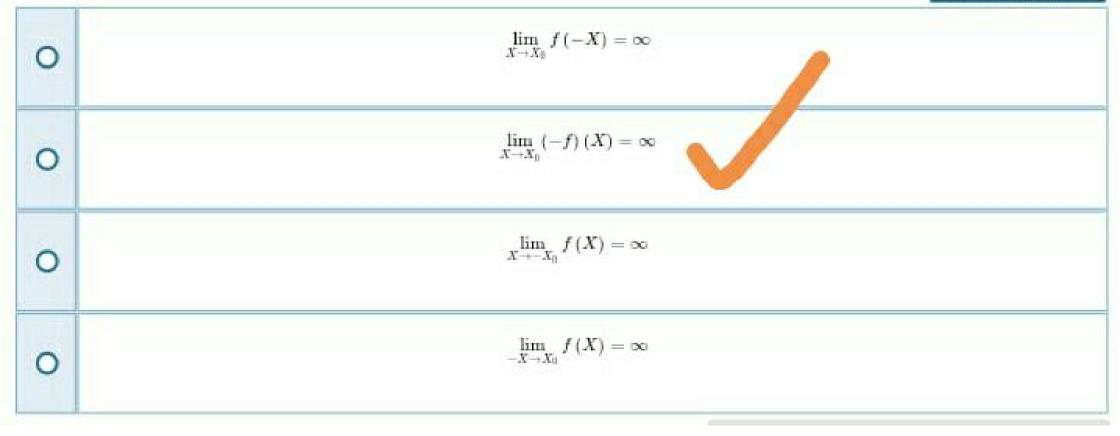
Reload Math Equations

0	$rac{1}{\sqrt{M}}$
0	\sqrt{M}
0	$\frac{1}{M}$
0	M

Question # 4 of 10 (Start time: 05:49:36 PM, 26 February 2021)

Total Marks: 1

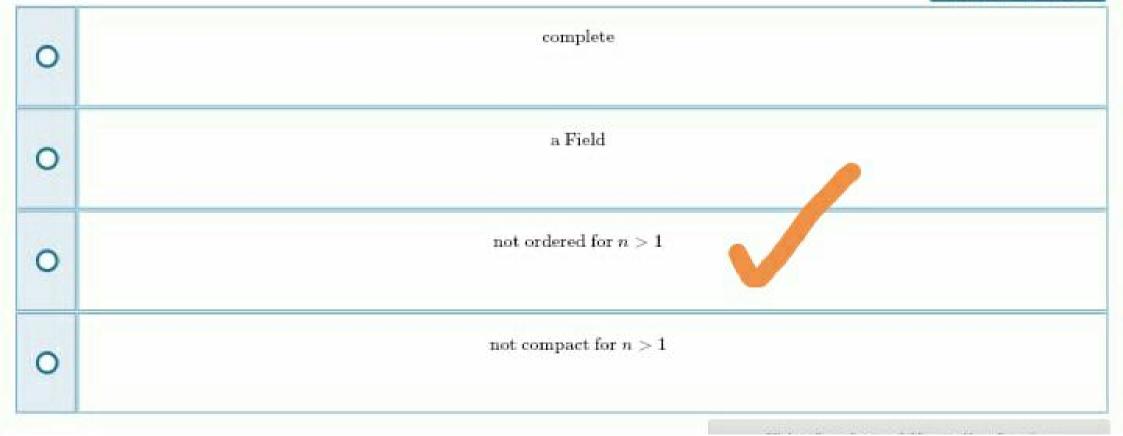
In
$$\mathbb{R}^n$$
, $\lim_{X\to X_0} f(X) = -\infty$, if



Question # 3 of 10 (Start time: 05:49:04 PM, 26 February 2021)

Total Marks: 1

In \mathbb{R}^n , monotonicity, limits inferior and superior of sequences, and divergence to $\pm \infty$ are undefined for n > 1 because \mathbb{R}^n is -----.



Question # 10 of 10 (Start time: 05:13:08 PM, 26 February 2021)

Total Marks: 1

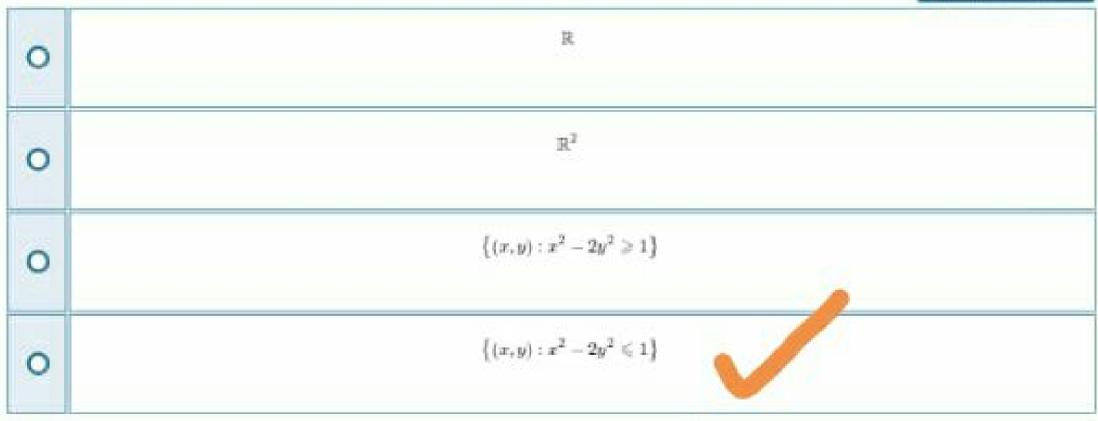
In \mathbb{R}^n , a function f is differentiable at X_0 , $\Leftrightarrow \exists$ a linear function L in a way that $f(X) - f(X_0)$ can be approximated near X_0 by L satisfying $L(X \pm X_0) = LX \pm LX_0$ such that $f(X) - f(X_0) = L(X - X_0) + E(X)(|X - X_0|)$ and $\lim_{X \to X_0} E(X) = ---$.



If
$$g(x, y) = \sqrt{1 - x^2 - 2y^2}$$
, $f(t) =\begin{cases} \frac{\sin t}{t}, t \neq 0 \\ 1, t = 0 \end{cases}$.

Select the correct option

Reford Math Equations



Question # 3 of 10 (Start time: 05:08:54 PM, 26 February 2021)

Total Marks: 1

A set A ⊂ R of real numbers is -----if there exists a real number m ∈ R, such that x ≥ m for every x ∈ A.

Select the correct option

0

0

0

0

bounded below

uniformly continuous

bounded above

None of these

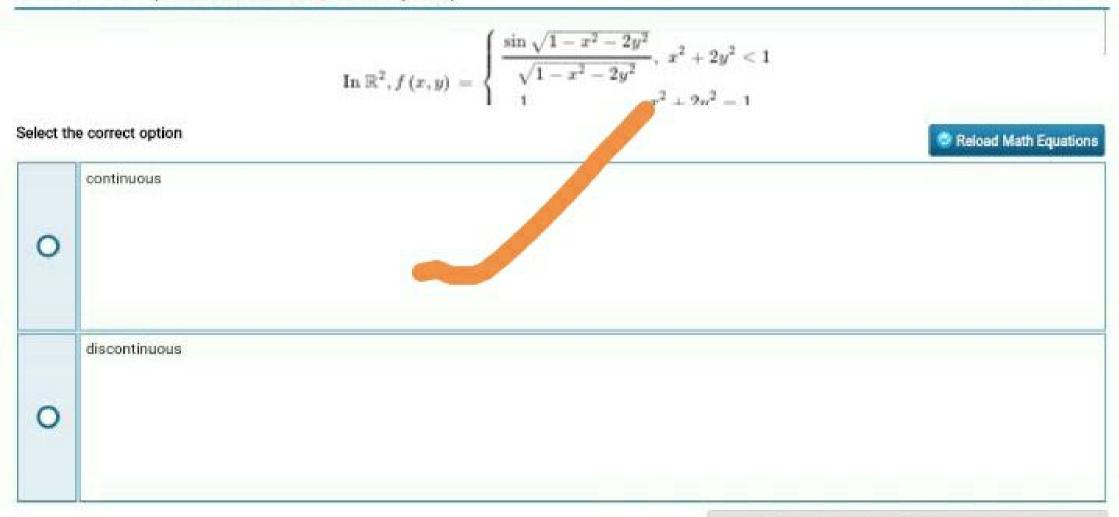
Question # 5 of 10 (Start time: 05:10:10 PM, 26 February 2021)

Analogous to the derivative of a function of one variable in \mathbb{R}^2 , the directional derivative of a function $f \text{ at } X_0 \text{ in } \mathbb{R}^n \text{ has } ----- \text{ value}(s).$

the correct option	Relo
multiple	
infinite many	
unique	
integral	
	infinite many unique

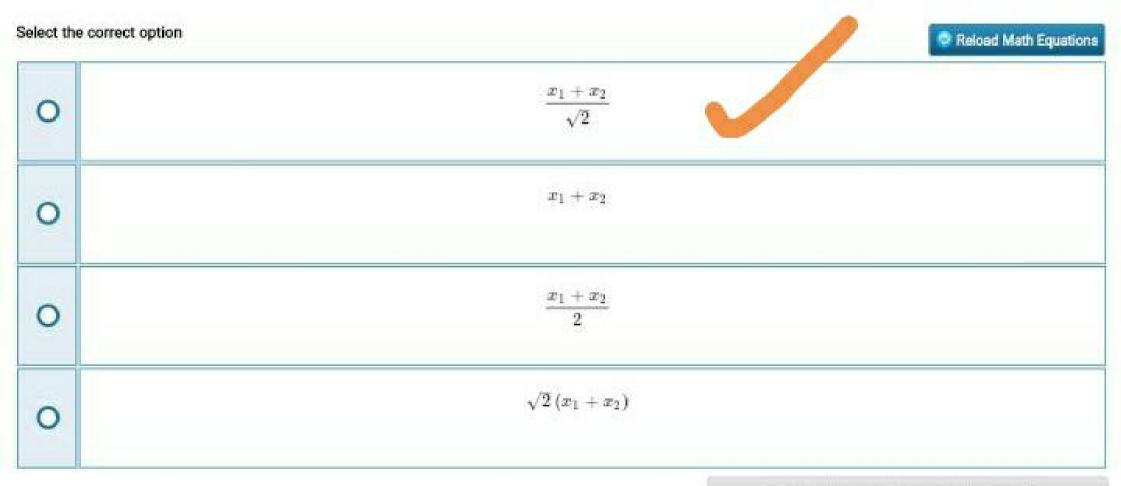
If a function f is continuous on a compact set S in \mathbb{R}^n , and $\alpha = \inf_{X \in S} f(X)$, $\beta = \sup_{X \in S} f(X)$, then $f(X_1) = \alpha$ and $f(X_2) = \beta - \cdots - X_1$ and X_2 in S.

t the correct option



Telliak to Seyse Anama F. Move to Next Egyption

$$\operatorname{In}\mathbb{R}^{2}, f\left(X\right)=\left|X\right|^{2} \text{ and } \Phi=\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \text{ then } \frac{\partial f\left(X\right)}{\partial \Phi}=$$



If a function f is continuous on a Compact set S in \mathbb{R}^n , then f is ---- on S.

Select th	ne correct option	Reload Math Equations
0	bounded above	
0	bounded below	
0	unbounded	
0	bounded	

If $g(x,y) = \sqrt{1-x^2-2y^2}$, $f(t) = \begin{cases} \frac{\sin t}{t}, & t \neq 0 \\ 1, & t = 0 \end{cases}$,

 \mathbb{R}

 \mathbb{R}^2

Select the correct option

0

Reload Math Equations

 $\left\{(x,y): x^2-2y^2\geqslant 1\right\}$

 $\left\{(x,y):x^2-2y^2\leqslant 1
ight\}$

In \mathbb{R}^n , if the first order partial derivative of a function f(X) exits at X_0 , then it is essentially continuous at X_0 .

In \mathbb{R}^n , the function f(X) is continuous at X_0 , if $\lim_{X \to X_0} f(X) = f(X_0)$, then -----.

Reload Math Equations
X_0 is in the domian D_f and limit point of D_f
X_0 is in the domian D_f but not a limit point of D_f
X_0 is not in the domian D_f but a limit point of D_f
neither X_0 is in the domian D_f nor the limit point of D_f

Click to Seve Answer E. Move to Next Greation

Analogous to the derivative of a function of one variable in \mathbb{R}^2 , the directional derivative of a function f at X_0 in \mathbb{R}^n has ----- value(s).

Select th	ne correct option	Reload Math Equations
0	multiple	
0	infinite many	
0	unique	
0	integral	

Glight in Serve Answer & Microson Prost Guestian.

In \mathbb{R}^n , monotonicity, limits inferior and superior of sequences, and divergence to $\pm \infty$ are undefined for n > 1 because \mathbb{R}^n is - - - - - .

complete

a Field

Reload I

not ordered for n>1

not compact for n > 1

Click to Saya Answer & Move to Next Question

A sufficient condition for a function of several variables to be differentiable at point is

Select the correct option		Reload Math Equations
0	only the partial derivative should exists at that point.	
0	All partial derivatives exists and are continuous at that point	
0	only limit at that point should exists.	
0	None of these	

Let f be defined on an interval I in \mathbb{R}^2 . Suppose that x_1 and x_2 are in I and $f(x_1) < y < f(x_2)$.

Then f(x) = y for some x in I.

Select the correct option

Clink to Save Answer & Move to Next Question.

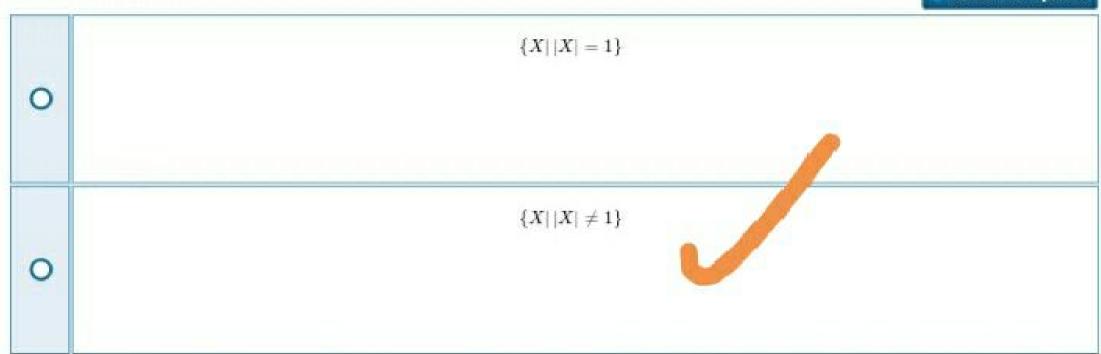
If $f\left(x,y,z
ight)=\cos\left(rac{1}{x^{2}+2y^{2}+z^{2}}
ight)$ then $\lim_{|X| o\infty}f\left(X
ight)=$ ______.

Select th	ne correct option	Reload Math Equations
0	1	
0		
0	-1	
0	infinite	

The domain of the real valued function $f : \mathbb{R}^n \to \mathbb{R}$ defined and given by;

$$f(X) = (1 - x_1^2 - x_2^2 - \dots - x_2^n)^{-1}$$
 is ----.

Select the correct option



Clink to Save Answer & Move to Next Question.

Question # 8 of 10 (Start time: 04:56:51 PM, 26 February 2021)

Total Marks: 1

Identify the false statement(s)

Select the correct option

0

0

The partial	derivative is	s a special	case of	directional	derivative

For a functions of n variables

 $f(\mathbf{X})$

the partial derivative with respect to variable

The partial derivative of the function

with respect to third variable is

None of these

$$\ln \mathbb{R}^{2}, f(x, y) = \begin{cases} \frac{\sin \sqrt{1 - x^{2} - 2y^{2}}}{\sqrt{1 - x^{2} - 2y^{2}}}, & x^{2} + 2y^{2} < 1\\ 1, & x^{2} + 2y^{2} = 1 \end{cases}$$

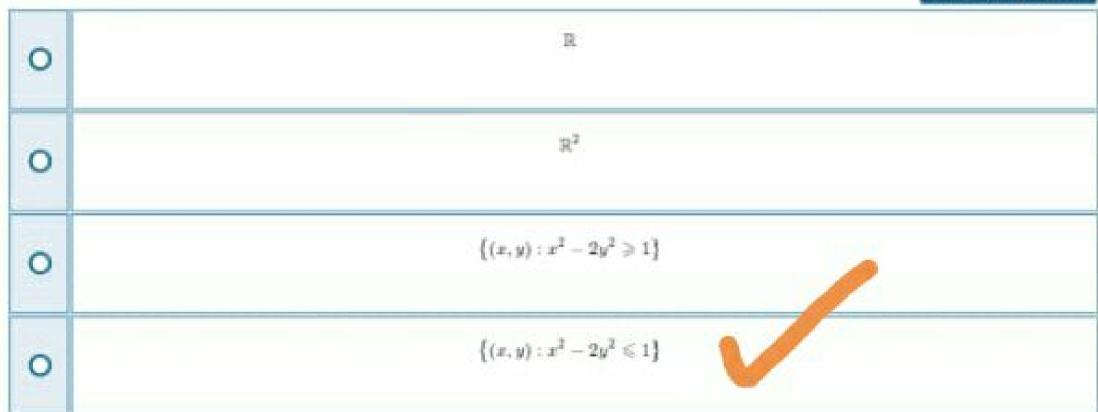
Select the correct option

Reload Math Equations

$$\text{If } g\left(x,y\right) = \sqrt{1-x^2-2y^2}, \ f\left(t\right) = \left\{ \begin{array}{l} \frac{\sin t}{t}, \ t \neq 0 \\ 1, \quad t = 0 \end{array} \right. .$$

Select the correct option

Relead Math Equations



If f is continuous on a compact set S in \mathbb{R}^n , then f ---- on S.

Select the correct option		Reload Math Equations
0	attains all its bounds	
0	is also uniformly continuous	
0	is also defined on all the limit points of "S"	
0	All above are equally valid	

Question # 9 of 10 (Start time: 04:57:28 PM, 26 February 2021)

Total Marks: 1

If a function f is continuous on a compact set S in \mathbb{R}^n , and $\alpha = \inf_{X \in S} f\left(X\right)$, $\beta = \sup_{X \in S} f\left(X\right)$,

then $f(X_1) = \alpha$ and $f(X_2) = \beta - - - - X_1$ and X_2 in S.

Select the correct option

Reload Math Equations

Select the correct option

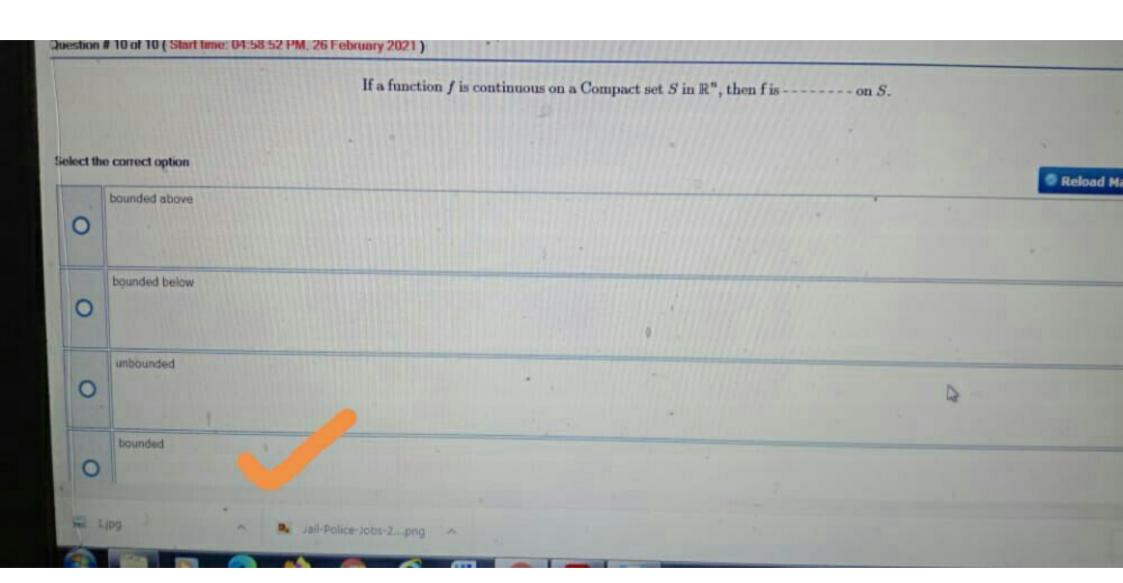
which seems are the first of the formation of the first o

Question # 4 of 10 (Start time: 04:53:55 PM, 26 February 2021)

Total Marks: 1

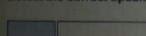
$$\ln \mathbb{R}^2, \ \lim_{(x,y)\to(2,2)} \frac{\sin(x-y)}{\sqrt{x-y}} = ----.$$

		Reload Math Equations
0	- Too :	
0	1	
0	$\sqrt{2}$	
0	0	



In \mathbb{R}^n , a function f is differentiable at X_0 , $\Leftrightarrow \exists$ a linear function L in a way that $f(X) - f(X_0)$ can be approximated near X_0 by L satisfying;

Select the correct option



0

$$L\left(X-X_{0}\right)=LX-LX_{0}$$

$$L\left(XX_{0}\right)=\left(LX\right)\left(LX_{0}\right)$$

$$L\left(\frac{X}{X_0}\right) = \frac{LX}{LX_0}, \ |X_0| \neq 0, LX_0 \neq 0$$

None of the above

1, 26 February 2021)

$$\lim_{(x,y)\to(a,b)} \frac{\sin\sqrt{1-x^2-2y^2}}{\sqrt{1-x^2-2y^2}} = 1, \text{ if } ----$$

$$\left(a^2 + 2b^2\right) > 1$$

$$(a^2 + 2b^2) < 1$$

$$(a^2 + 2b^2) = 1$$

$$(a^2 + 2b^2) > 1$$

Question # 5 of 10 (Start time: 05:56:58 PM, 26 February 2021)

For the function

in two variables.

$$f(x,y) = 3x^2y^3 + xy$$

Select the correct option

