

5:06 PM

MC180405026: SYED AHSAN ALI MTH641:Grand Quiz Question # 28 of 30 (Start time: 05:06:24 PM, 08 July 2020)		Time Left 86
		Quiz Start Time: 04:38 PM, 08 July 2020
		Total Marks: 1
Ve	ctor space X={0} has	
Select th	e carrest option	
0	proper subspace.	
•	no proper subspace.	
0	infinite dimensional.	
0	none of given options.	
		Clasic to Save Answer & Move to Next Question

MC180405026: SYED AHSAN ALI

MTH641:Grand Quiz

Question # 27 of 30 (Start time: 05:04:39 PM, 08 July 2020)

Vector space X is called complex vector space if

Select the correct option

	-	٩	
C		٦	١
•		J	1
	_		

$$K = \mathbb{R}$$

 $K=\mathbb{C}$

$$K=\mathbb{Q}$$

$$K = \mathbb{N}$$

	404530: MUHAMMAD ASIF	Quiz Start Time Left 88 auctio
	n # 22 of 30 (Start time: 02:38:36 PM, 08 July 2020)	Total Marks:
_	discrete metric space X is Se	
Select	Complete	
0	Nowhere dense	
0	Countable	
0	Dense	
	1	California (Inc.) - Carrier

MTH 641 Functional Analysis

Example 2:

$$a_n = \left\{\frac{1}{n}\right\}_{n=1}^{\infty} \subset (0,1]$$

s a Cauchy sequence as $a_n \to 0 \notin (0,1]$

Hence the sequence a_n in space X is converging to 0 but this does not belong to tha 0,1, the function define on space is

$$d(x, y) = |x, y|$$
 is Cauchy.

this space (0,1] is not complete.

For every Cauchy sequence, it should converge to element of that space; if it onverges to space then we say that it is complete space.

MODULE No. 27

ere we relate the convergent sequence and bounded sequence.

HEOREM CONVERGENT SEQUENCE:

heorem:

M.C.Q

Every convergent sequence in a metric space is a Cauchy sequence.

oof:

Let $\{x_n\}$ be a convergent sequence such that $x_n \to x$ for every $\varepsilon > 0$ the

$$= N(\varepsilon) \quad such that \quad d(x_n, x) < \frac{\varepsilon}{2} \quad \forall \quad n > N$$

w we have to prove that $\{x_n\}$ is a Cauchy sequence, for this we have to pro-

$$d(x_m, x_n) < \varepsilon$$
 ; $m, n > N$

first choose that m>N then by triangular inequality,

$$d(x_m, x_n) \le d(x_m, x) + d(x_n, x) \quad ; \qquad m, n > N$$

$$d(x_m, x) < \frac{\varepsilon}{2}$$
 , $d(x_n, x) < \frac{\varepsilon}{2}$

	0404530; MUHAMMAD ASIF RI-Grand Quiz	Time Left settle) Quiz Start Time: 02:19 PM, St. July 202
Questio	on # 18 of 30 (Start Uses: 02:35:50 PM, 08 July 2025)	Total Merks:
Α.	sequence in a metric s	space is Cauchy Sequence.
Salect t	the correct sption	
0	Convergent	
0	Bounded	
0	Divergent	
0	Subsequence	
		Carlon promption of a purchase

	404530; MUHAMMAD ASIF	Time Left 81 Quiz Start Time (2:19 PM, SR July 2020
Question # 17 of 30 (Start time: 02.35.09 PM, 08 July 2020)		Total Marks:
Ide	entity operator is	
Select to	he correct spition	
0	linear operator.	
0	non linear operator.	
0	Zero operator.	
0	discontinuous operator.	
	l	Composition of the composition o

J ≪

:

MC180404530: MUHAMMAD ASIF

MTH641:Grand Quiz

Juestion # 16 of 30 (Start time: 02:34:05 PM, 08 July 2020)

If (\mathbb{R},d) be a usual metric space, then which of the following is a correct choice about \mathbb{R} ?

Select the correct option

0	ℝ is a neighbourhood of each of its points.
0	R is an open set.
0	Its every point is an interior point.
0	All of them.

Validade.

L

⋖

:

MC180404530: MUHAMMAD ASIF

MTH641:Grand Quiz

Question # 13 of 30 (Start time: 02:30:37 PM, 08 July 2020)

If (\mathbb{R},d) be a usual metric space and $\mathbb{Z}\subseteq\mathbb{R}$, then which of the following is a correct choice about \mathbb{Z} ?

0	None of its point is an interior point.
0	It is not an open set.
0	It has disjoint intersection with the set of its interior points.
0	All of them.

Showing results for *integration* operator is linear

Search instead for integraion operator is linear

Integral operator.

 $Aφ(t)=\int DK(t,τ)φ(τ)dτ$, t∈D. The **operator** generated by the **integral** in (2), or simply the **operator** (2), is called a **linear integral operator**, and the function K is called its kernel (cf. also Kernel of an **integral operator**).

Jun 5, 2020

https://encyclopediaofmath.org > wiki

Integral operator - Encyclopedia of Mathematics

About Featured Snippets
Feedback

PEOPLE ALSO ASK	
Is integration linear or nonlinear?	~
What is meant by linear operator?	~
What is the kernel of an integral?	~

WhatsApp • 520 messages from 56 c... • Just now Project mth620 topic 15: +92 310 1659404 https:/...

Mth641 grand quizez 1: +92 343 7373412 C

Mth634 grand quizez (15 messages): +92 308 849...

Vu Msc math 2nd semester (15 messages): +92 30...

Pakistan Jobs Info(Official) (38 messages): +92... +2

Integration operator from ${\cal C}[a,b]$ into itself is

0	linear operator.
0	non linear operator.
0	Zero operatotr.
0	discontinuous operator.

	0404530; MUHAMMAD ASIF	Time Left 85 acc(s) a
	n # 11 of 30 (Start time: 02:29:14 PM, 08 July 2020)	Total Marks:
	e real line R is a complete metric sp nse subsets	ace having two
Select to	the surrect option	
0	disjoint	
0	overlapping	
0	finite	
0	infinite	

□ ≪

MC180404530: MUHAMMAD ASIF

MTH641:Grand Quiz

Question # 10 of 30 (Start time: 02:28:19 PM, 08 July 2020)

In functional analysis field is taken

Select the correct option

0	R or Z .
0	Q or N .
0	Q
0	R or C ,

Glickin Savak

a set of real number is the unio

ALL

IMAGES

NEWS

VIDEOS

MAPS

31

A **real number** is any element of the **set** R, which is the **union** of the **set** of rational **numbers** and the **set** of irrational **numbers**. In mathematical expressions, unknown or unspecified **real numbers** are usually represented by lowercase italic letters u through z.

https://whatis.techtarget.com → r...
 €

What is real number? - Definition from WhatIs.com

PEOPLE ALSO ASK

What is cate of real numbers?

Recent

More

:

Outer Start Time: 02:19 PM, 68 July 2020 The set of real numbers is the union of	MC180	404530; MUHAMMAD ASIF	Time Left 89
The set of real numbers is the union of	MTH64	1:Grand Quiz	Quiz Start Time: 02:19 PM, 08 July 202
set of rational numbers & whole numbers set of rational numbers & irrational numbers set of negative integers and positive integers set of complex numbers and natural numbers	Juestiur	n # 9 of 30 (Shart line: 02:27:28 PM, 08 July 2020)	Total Marks:
set of natural numbers & whole numbers set of rational numbers & irrational numbers set of negative integers and positive integers set of complex numbers and natural numbers	Th	e set of real numbers is the union of	••••
set of negative integers and positive integers set of complex numbers and natural numbers		A STATE OF THE STA	
set of complex numbers and natural numbers	0	set of rational numbers & irrational numbers	
	0	set of negative integers and positive integer	S
	0	set of complex numbers and natural number	rs

	4D4530; MUHAMMAD ASIF	Time Left 85 acc(s) 2
	# 8 of 30 (Shart Sine: 02:26:55 PM, 08.July 2020)	Total Marks: 1
In :	a discrete metric space X, every subset is	
Select to	ne correct option	
0	open and closed.	
0	open.	
0	closed.	
0	countable.	
	(public)	

⋖

:

Question # 7 of 30 (Start time: 02:26:05 PM, 08 July 2020)

 \mathbb{R}^n is

Select t	he correct option
0	Euclidean space and complete.
0	Euclidean space and incomplete.
0	Unitary space and complete.
0	Unitary space and incomplete.

⋖

:

MC180404530: MUHAMMAD ASIF

MTH641:Grand Quiz

Question # 4 of 30 (Start time: 02:22:19 PM, 08 July 2020)

Let (X,d) be a metric space and $A\subseteq X$, then the limit point of A____.

0	must be an element of A
0	may or may not be an element of A
0	must be an element of both X and A
0	None of them.

A mapping from a normed space X into a normed space Y is called an operator. A mapping from X into the scalar field R or C is called a functional. Of particular importance are so-called bounded linear operators (cf. 2.7-1) and bounded linear functionals (cf.

About Featured Snippets
Feedback

PEOPLE ALSO ASK

What is a vector space over a field?

MC180	404530; MUHAMMAD ASIF	Time Left 87
MTH64	1:Grand Quiz	Quiz Start Time: 02:19 PM, 68 July 2020
Questin	n # 2 of 30 (Shart time: 02:30:25 F54, 08 July 2020)	Total Marks: 1
	, d) be a usual metric space and \mathbb{R} - $\mathbb{Q}\subseteq\mathbb{R}$, then which of the following is correct option? The correct option	
Select 0		♥ Reliced Math Equations
0	The set of limit points of $\mathbb{R}-\mathbb{Q}$ is open.	
0	The set of limit points of $\mathbb{R}-\mathbb{Q}$ is closed.	
0	The set of limit points of $\mathbb{R}-\mathbb{Q}$ is an empty set.	
0	None of them.	

closed.

countable.

0

0

0	both spaces are complete.
0	both spaces are incomplete.
0	only space l^p is complete.
0	only space l^∞ is incomplete

Select the correct option		
0	proper subspace.	
0	no proper subspace.	
0	infinite dimensional.	
0	none of given options.	

a vector space is taken over a f

ALL

VIDEOS

IMAGES

NEWS

MAPS

In this article, vectors are represented in boldface to distinguish them from scalars. A vector space over a

field F is a set V together with two operations that satisfy the eight axioms listed below. ... : $F \times V \rightarrow V$, takes any scalar a and any vector v and gives another vector av.

W https://en.m.wikipedia.org > wiki

Vector space - Wikipedia

About Featured Snippets

Feedback

PEOPLE ALSO ASK

Recent

More

MC180405026: SYED AHSAN ALI MTH641:Grand Quiz		Quiz Start Time: 04:38 PM, 08 July 2020	
Th	e interior of M is the set of all		
Select ti	isolated points of M.		
0	interior points of M.		
0	all open balls of M.		
0	all closed balls of M.		
		Charles and annual franchisms and annual	

quiz.vu.edu.pk

MC180201270: YASIR FAROOQ		Time Left 78 sec(s)
MTH641	:Grand Quiz	Quiz Start Time: 12:19 PM, 08 July 2020
Question	# 2 of 30 (Start time: 12:19:44 PM, 08 July 2020)	Total Marks: 1
A vecto	A vector space is taken over a	
Select th	e correct option	
OCICOT III		Reload Math Equations
	normed space.	
0		
	field.	
0		
0	function.	
	functional.	
0		

Question # 24 of 30 (Start time: 05:00:31 PM, 08 July 2020)

 l_p is a space in which every point is a

0	sequence.
0	function.
0	set.
	either set or function.

Question # 26 of 30 (Start time: 04:59:39 PM, 08 July 2020)

Total Marks: 1

In the real line R with the discrete metric, the rationals Q are____

Select ti	he correct option	Reload Math Equations
0	open, Closed, Bounded, and Compact	
0	complete, Connected, Open, and Bounded	
0	bounded, Closed, Complete, and Open	
0	closed, Compact, Complete and Connected	

Click to Save Answer & Move to Next Question

google.com/search?ei=

PEOPLE ALSO ASK

What does it mean for a metric space to be bounded?

Bounded Set. A set in a metric space is **bounded** if it has a finite generalized diameter,

2

Question # 22 of 30 (Start time: 04:58:16 PM, 08 July 2020)

$$L^2[a,b]$$
 is

0	Normed space.
0	Complete space.
0	Banach space.
0	Null space.

	_	
•	_	٦
	n	
	L	
L	_	,

M I Ho4 I:Grand Quiz

Question # 19 of 30 (Start time: 04:54:41 PM, 08 July 2020)

Let (\mathbb{R},d) be a usual metric space and $\mathbb{Q}\subseteq\mathbb{R}$, then which of the following is correct option?

	The set of limit points of $\mathbb Q$ is open.
0	The set of limit points of $\mathbb Q$ is closed.
0	The set of limit points of $\mathbb Q$ is an empty set.
0	None of them.

	·	
MC180201270: YASIR FAROOQ		Time Left 86 sec(s)
MTH641	:Grand Quiz	Quiz Start Time: 12:19 PM, 08 July 2020
Question	# 16 of 30 (Start time: 12:39:27 PM, 08 July 2020)	Total Marks: 1
\mathbb{R}^n is		
Select th	e correct option	Reload Math Equations
	Euclidean space and complete.	
0		
	Euclidean space and incomplete.	
0		
	Unitary space and complete.	
0		
	Unitary space and incomplete.	
0		

et X be	2 of 30 (Start time: 01:01:50 PM, 08 July 2020)	
	a metric space and Y is a closed subset of X such that the distance between any two points in Y is at in	nost 1 Then
plect the	correct option	
The state of the s		
0	Y is compact	
0		
	any continuous function from $Y o\mathbb{R}$ is bounded	
0		
	$oldsymbol{Y}$ is not an open subset of X	
0	Y is not an open subset of A	
	Nane of them	
0		
		D

2:

MTH641:Grand Quiz

Question # 18 of 30 (Start time: 04:52:42 PM, 08 July 202

$$||x+y||$$

$$\leq ||x|| + ||y||$$

$$\geqslant ||x|| + ||y||$$

$$= \|x\| + \|y\|$$

$$\leqslant 2 \, \|x\|$$

↑ auiz.vu.edu.pk/OuizOu∈ 2

NC 100	405026: SYED AHSAN ALI	Time Left 82
ITH64	1:Grand Quiz	Quiz Start Time: 04:38 PM, 08 July 202
	n # 17 of 30 (Start time: 04-51:05 PM, 08 July 2020)	Total Marks:
H (BL)	d) be a usual metric space, and $A=\{1,2,3\}\subseteq\mathbb{R}$ then which of the following	g is a connect choice about A?
elect t	he correct option	😇 He load Math Equations
•	Its interior point is 1.	
0	lts interior point is 2.	
0	Both 1 and 2 are its interior points.	
	None of its point is an interior point.	

AC180	405026: SYED AHSAN ALI	1	ime Left 85 exc(x)
TH64	1:Grand Quiz	Quiz Start Time: 84.3	BROWN AND
	n # 2 of 30 (Start time: 04:38-53 PM, 08 July 2020)		Total Marks
et (R	, $d)$ be a usual metric space, then the interior points of the set $A=\{-3,3\}$?		
elect t	la correct aption	O Re	icuel Math Equations
0			
0	2.3		
0			
0	2.8		
	All of them		
•			
	Cle	ik to Save Accesse & Mores to B	lest Quantien

aliche deservations of their plantage lies.

	404530; NIUHAMMAD ASIF	Quiz Start Time Left 90 Gac(s) Quiz Start Time 02:59 PM, GB July 2020
Question	# 1 of 30 (Start time: 02:19:25 PM, 08 July 2020)	Total Marks:
	napping from a normed space led	e into a normed space is
Salact th	e correct aption	
0	operator.	
0	functional.	
0	continuous mapping.	
0	norm.	
		Garage and the state of the

Question # 6 of 30 (Start time: 02:24:59 PM, 08 July 2020)

Norm $\|x\|$ is the distance from x to

Select th	e correct option
0	0
0	1
0	x itself.
0	an arbitrary point.

າ ≪

MC180404530: MUHAMMAD ASIF

MTH641:Grand Quiz

Question # 15 of 30 (Start time: 02:32:20 PM, 08 July 2020)

If (\mathbb{R},d) be a usual metric space and $\mathbb{Z}\subseteq\mathbb{R}$, then which of the following is NOT correct choice about \mathbb{Z} ?

0	It is not a neighbourhood of any of its point.
0	Neither of its point is an interior point.
0	It must be an open set.
0	None of them.

R

vample 1:

Let x and y be two real points on real line, then

$$d(x,y) = |x-y| \quad ;$$

$$x, y \in \mathbb{R}$$

Now we prove all the four properties (axioms) of metric space.

$$d(x,y) = |x-y| d(x,y) = |x-z+z-y| ; d(x,y) \le |x-z|+|z-y| ; = d(x,z)+d(z,y)$$

Euclidean plane R2

also know that a subspace is complete if and only if it is closed that a subspace is complete and we

is true for finite dimensional subspace but for infinite space it is not true For finite dimensional subspace Y of a normed space X is closed in X. This result

space which are not closed space. We use dense, limit points to prove this-Infinite dimensional subspaces are like C[0,1]. I' are infinite dimensional normed

MODULE No. 48

NORMED SPACES

/ Theorem (Equivalent Norms) o insonthing car

	1401670; ABDUL RAUF BOOLA	Time Left 86 acc(s)	
MTH641:Grand Quiz		Quiz Start Time: 02:48 PM, 68 July 2020	
_	n # 2 of 30 (Start time: 02:48:50 PM, 08 July 2020)	Total Marks: 1	
C[a	a,b] is		
Select th	he correct option		
0	Finite dimensional.		
0	Infinite dimensional.		
0	Not a vector space.		
0	zero vector space		

quiz.vu.edu.pk

≪

:

MTH641:Grand Quiz

Question # 27 of 30 (Start time: 02:43:47 PM, 08 July 2020)

For a metric space (X,d), the property d(x,y)=d(y,x), $\forall x,y\in X$ is called —property.

Select the correct option

0	Non negativity
0	Reflexive
0	Symmetric
0	None of them

Pit

MC180404530: MUHAMMAD ASIF

MTH641:Grand Quiz

Question # 23 of 30 (Start time: 02:39:57 PM, 08 July 2020)

|x+y|

Select the correct option

- 0
- $\leqslant \|x\| + \|y\|$
- 0
- $\geqslant ||x|| + ||y||$
- = ||x|| + ||y||
- O | ≤ 2 ||x||

12

MC1804D4530: MUHAMMAD ASIF

MTH641-Grand Quiz

Question # 24 of 30 (Start time: 02:40:36 PM, 08 July 2020)

Total Marks: 1

If (\mathbb{R},d) be a usual metric space, then both 3.2 and 1 are the interior points of the set A=(-3,3).

	quiervalcaulpit	
MC180	404530 MUHAMMAD ASIF	Time Left 86
MTH641:Grand Quiz		Quiz Start Time: 02:19 PM, 08 July 2020
Questin	n # 25 of 30 (Skart time: 02.41.44 PM, 08 July 2020)	Total Marks: 1
Let (R	(t,d) be a usual metric space and $A=(2,3)\subseteq\mathbb{R}$, then which of the following is NOT or	nrect option?
Select t	he correct option	Teloud Math Equations
	The set of limit points of A is [2, 3].	
0		
	The set of limit points of A is $(2,3)$.	
0		
	The set of interior points of $A \approx (2,3)$.	
0		
	None of them.	
0		

	404530; MUHAMMAD ASIF Grand Quiz Start Time	Time Left 86 (sec(s)) 02:19 PM, 58 July 2020
Question	# 30 of 30 (Shart time: 02:46:12 PM, 08 July 2020)	Total Marks:
	napping from a normed space into a scalar field led	is
Salect II	e serrect aption operator.	
0	functional.	
0	continuous mapping.	
0	norm.	
	Carlo power (for	

quiz.vu.edu.pk

≪

:

MTH641:Grand Quiz

Question # 4 of 30 (Start time: 02:49:42 PM, 08 July 2020)

If (\mathbb{R},d) be a usual metric space , then d(2,8) = ———

- $\int_{0}^{2} dx$
- $O = 2 + \int_{0}^{2} 2x dx$
- $\bigcirc \int\limits_{0}^{2}(2x+1)dx$

quiz.vu.edu.pk

≪

:

MC170401070: ABDUL RAUF BODLA

MTH641:Grand Quiz Start

Question # 6 of 30 (Start time: 02:50:34 PM, 08 July 2020)

Let (\mathbb{R},d) be a usual metric space, then which of the following is NOT an interior point of the set A=(-3,3]?

0	1
0	1.5
0	2
0	3

Theorem (Closedness)

As we have already proved that every finite dimensiona know that a subspace is complete if and only if it is clo

eorem

inclisional subspace r of a norme 1 s t ue for finite dimensional subspace but for infinite s acc

Infinite dimensional subspaces are like C[0,1], ce which are not closed space. We use dense, limit pin

MODULE NO.

ORMED SPACES

> Theorem (Equivalent Norms)

Definition

A norm $\|.\|$ on a vector space X is said to be equiv positive numbers a and b such that for all $x \in X$ we have

$$||a||x||_o \le ||x|| \le ||x||_o b$$

This property should hold for every element x of vector norm).

If we prove about condition then we say that these two r