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PREFACE

I prepared this lecture note in order to teach DS-GA 1003 “Machine Learn-
ing” at the Center for Data Science of New York University. This is the first
course on machine learning for master’s and PhD students in data science, and
my goal was to provide them with a solid foundation on top of which they can
continue on to learn more advanced and modern topics in machine learning,
data science as well as more broadly artificial intelligence. Because of this goal,
this lecture note has quite a bit of mathematical derivations of various concepts
in machine learning. This should not deter students from reading through this
lecture note, as I have interleaved these derivations with accessible explana-
tions on the intuition and insights behind these derivations. Of course, as I was
preparing this note, it only became clear how shallow my own foundation in
machine learning was. But, I tried.

In preparing this lecture note, I tried my best to constantly remind my-
self of “Bitter Lesson” by Richard Sutton [Sutton, 2019]. I forced myself to
present various algorithms, models and theories in ways that support scalable
implementations, both for compute and data. All machine learning algorithms
in this lecture are thus presented to work with stochastic gradient descent and
its variants. Of course, there are other aspects of scalability, such as distributed
computing, but I expect and hope that other more advanced follow-up courses
would teach students with these advanced topics based on the foundation this
course has equipped those students with.

Despite my intention to cover as much foundational topics as possible in
this course, it only became apparent that one course is not long enough to
dig deeper into all of these topics. I had to make a difficult decision to omit
some topics I find foundational, interesting and exciting, such as online learning,
kernel methods and how to handle missing values. There were on the other hand
some topics I intentionally omitted, although I believe them to be foundational
as well, because they are covered extensively in various other courses, such
as sequence modeling (or large-scale language modeling). I have furthermore
refrained from discussing any particular application, hoping that there are other
follow-up courses focused on individual application domains, such as computer
vision, computational biology and natural language processing.

There are a few more modern topics I hoped I could cover but could not
due to time. To list a few of those, they include ordinary differential equation
(ODE) based generative models and contrastive learning for both representation
learning and metric learning. Perhaps in the future, I could create a two-course
series in machine learning and add these extra materials. Until then, students
will have to look for other materials to learn about these topics.

This lecture note is not intended to be a reference book but was created to
be a teaching material. This is my way of apologizing in advance that I have
not been careful at all on extensively and exhaustively citing all relevant past
literature. I will hopefully add citations more thoroughly the next time I teach
this same course, although there is no immediate plan to do so anytime soon.
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Chapter 1

An Energy Function

A usual way to teaching machine learning is to go through different problem
setups. It often starts with binary classification, when perceptron, logistic regres-
sion and support vector machines are introduced, and continues with multi-class
classification. At this point, it is usual to introduce regression as a continu-
ous version of classification. Often, at this point, one would learn about kernel
methods and neural networks, with focus on backpropagation (a more recent
development in terms of teaching machine learning.) This is also at a point
where one would take a detour by learning probabilistic machine learning, with
the eventual goal of introducing a Bayesian approach to machine learning, i.e.,
marginalization over optimization. The latter half of the course would closely
resemble the contents so far however in an unsupervised setting, where we learn
that machine learning can be useful even when observations are not associated
with outcomes (labels). One would learn about a variety of matrix factorization
techniques, clustering as well as probabilistic generative modeling. If the lec-
turer were ambitious, they would sneak in one or two lectures on reinforcement
learning at the very end.

A main issue of teaching machine learning in such a conventional way is that
it is extremely inconvenient for students to see a common foundation underlying
all these different techniques and paradigms. It is often challenging for students
to see how supervised and unsupervised learning connect with each other. It is
even more challenging for students to figure out that classification and clustering
are simply two sides of the same coin. In my opinion, it is simply impossible to
make a majority of students see the unifying foundation behind all these different
techniques and paradigms if we stick to enumerating all these paradigms and
techniques. In this course, I thus try to take a new approach to teaching machine
learning, largely based on and inspired by an earlier tutorial paper authored by
Yann LeCun and his colleagues [LeCun et al., 2006]. Other than this tutorial
paper, this approach does not yet exist and will take a shape I continue to write
this lecture note as the course continues.

To begin on this journey, we start by defining an energy function, or a
negative compatibility score. This energy function e assigns a real value to a
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pair of an observed instance and a latent instance (z, z) and is parametrized by
a multi-dimensional vector 6.

e:XXZxO =R (1.1)

X is a set of all possible observed instances, Z is a set of all possible latent
instances, and O is a set of all possible parameter configurations.

When the energy function is low (that is, the compatibility is high,) we say
that a given pair (z, 2z) is highly preferred given §. When the energy function is
high, unsurprisingly we say that the given pair is not as preferred.

The latent observation z is, as the name suggests, not observed directly. It
nevertheless plays an important role in capturing uncertainty. When we only
observe x, but not z, we cannot fully determine how preferable = is. With a
certain set of values of z, the energy may be low, while it may be high with
other values of z. This gives us a sense of the uncertainty. For instance, we can
compute both the mean and variance of the energy of an observed instance x
by

eu(z,0) = Ele(z, z,0)] Zp e(z,z,0), (1.2)

z€Z
ev(z,0) = E[(e(z, 2,0) — e,u(x, 0))?]. (1.3)

Given an energy function e and the parameter 6, we can derive a variety
of paradigms in machine learning by minimizing the energy function with re-
spect to different variables. For instance, let the observation be partitioned into
two parts; input and output and assume that there is no latent variable, i.e.,
e([z,y],@,0). Given a new input z’, we can solve the problem of supervised
learning by

¢ = argmine([2’,y], 2, 0), (1.4)
yey

where ) is the set of all possible outcomes y. When ) consists of discrete items,
we call it classification. If y is a continuous variable, we call it regression.

When Z is a finite set of discrete items, a given energy function e defines
the cluster assignment of an observation z, resulting in clustering:

- i 0). 1.5
Z = argmine(z, z,0) (1.5)

If z is a continuous variable, we would solve the same problem but call it repre-
sentation learning.

All these different paradigms effectively correspond to solving a minimization
problem with respect to some subset of the inputs to the energy function e. In
other words, given a partially-observed input, we infer the unobserved part that
minimizes the energy function. This is often why people refer to using any
machine learning model after training as inference.

It is not trivial to solve such a minimization problem. The level of difficulty
depends on a variety of factors, including how the energy function is defined,



the dimensionalities of the observed as well as latent variables as well as the
parameters themselves. Throughout the course, we will consider different setups
in which efficient and effective optimization algorithms are known and used for
inference.

As the name ‘machine learning’ suggests, a bulk of machine learning is on
estimating 6. Based on what we have seen above, it may be tempting to think
that learning is nothing but

glelg T~Pdata [6(’13, a, 9)] ) (16)
when there is no latent variable. It turned out unfortunately that learning is not
as easy, since we must ensure that the energy assigned to undesirable observa-
tion, i.e. pdata(x) J, must be relatively high. In other words, we must introduce
an extra term that regularizes learning:

géigEzNPdm le(z,2,0) — R(9)] . (1.7)
The choice of R must be made appropriately for each problem we solve, and
throughout the course, we will learn how to design appropriate regularizers to
ensure proper learning.

Of course it becomes even more involved when there are latent (unobserved)
variables z, since it require us to solve the problem of inference simultaneously as
well. This happens for problems such as clustering where the cluster assignment
of each observation is unknown and factor analysis where latent factors are
unknown in advance. We will learn how to interpret such latent variables and
algorithms that allow us to estimate 6 in the absence of latent variables.

In summary, there are three aspects to every machine learning problem; (1)
defining an energy function e (parametrization), (2) estimating the parameters
0 from data (learning), and (3) inferring a missing part given an partial obser-
vation (inference). Across these three steps sits one energy function, and once
we obtain an energy function e, we can easily mix and match these steps from
different paradigms of machine learning.



CHAPTER 1. AN ENERGY FUNCTION



Chapter 2

Basic Ideas in Machine
Learning with Classification

2.1 Classification

In the problem of classification, an observation x can be split into the input and
output; [z,y]. The output y takes one of the finite number of categories in ).
For now, we assume that there is no latent variable, i.e., Z = &. Inference is
quite trivial in this case, since all we need to do is to pick the category that has
the lowest energy, after computing the energy for all possible categories one at
a time:

j(z) = arg gg)r;e([wyy},@,@} (2.1)

Of course, this can be computationally costly if either |)| is large or z is high-
dimensional. We can overcome this issue by cleverly parametrizing the energy
function for instance as

e([z,y], @,9) = 1<y)Tf(x’0)v (22)

where 1(y) = [0,...,0,1,0,...,0] is an one-hot vector. This one-hot vector is
all zeroes except for the y-th element which is set to 1.

f: X x0O — RVl is a feature extractor that returns as many real values
as there are categories. With this parametrization, we can compute the energy
values of all categories in parallel. A relatively simple example of f is a linear
function, defined as

f(z,0) =Wz +0, (2.3)

where 6 = (W,b) with W € RYIXI#l and b € RYI. When such a linear feature
extractor is used, we call it a linear classifier.

A natural next question is how we can learn the parameters 6 (e.g. W and b).
We approach learning from the perspective of optimization. That is, we establish
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a loss function first and figure out how to minimize the loss function averaged
over a training set D, where the training set D is assumed to consist of N
independently sampled observations from the identical distribution (i.i.d.):
N
D ={lz",y"}r=1 - (24)

Perhaps the most obvious loss function we can imagine is a so-called zero-one
(0-1) loss:

Lo-1([z;9],0) = L(y # 9(=)), (2.5)
where

9(z) = arg min e([z,y'], 9, 6), (2.6)
y' ey

as described earlier (reproduced here for emphasis.) 1(a) is an indicator function
defined as

if a is true.
1(a) = if a is .rue @7
0, otherwise.

With this zero-one loss function, the overall objective of learning is then

N
HgnNT;LO—l([x Y },9) (28)

This optimization problem is unfortunately very difficult, because there is
almost no signal on how we can incrementally change 6 to gradually decrease the
loss function. The zero-one loss is a piece-wise constant function with respect
to 6. It is either 0 or 1, and any infinitesimal change to @ is unlikely to change
the loss value. In other words, the only way to tackle this problem is to sweep
through many (if not all) possible values of 6 and to identify the one that has
the lowest overall loss. Such an approach is called blackbox optimization, and is
known to be notoriously difficult.

2.1.1 Perceptron and margin loss functions

Instead, we can come up with a proxy to this zero-one loss function, that is easier
to optimize. We do so by assuming that the energy function is differentiable with
respect to 6, that is, Vge exists and is easily computable.! Then, we just need
to ensure that the loss function is not piece-wise constant with respect to the
energy function itself.

We start by noticing that the zero-one loss is minimized (= 0) when ¢’
associated with the lowest energy (= ¢) coincides with y from the training data.
In other words, the zero-one loss is minimized when the energy associated with

IWe will shortly see why it is find to assume that it is easily computable.
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the true outcome y, i.e., e([z,y], &, ), is lower than the energy associated with
any other y’ # y. This goal can then be written down as satisfying the following
inequality:

e([z,9],2,0) < e([2,9],2,0) —m, (2.9)

where m > 0 and
j =arg min e([z,v],2,0). 2.10
i =g min (o5 2.0 (2.10)

By rearranging terms in this inequality we get
m+e([z,y],2,0) —e([z,7],2,0) < 0. (2.11)

In order to satisfy this inequality, we need to minimize the left hand side (Lh.s.)
until it hits 0. We do not need to further minimize Lh.s. after hitting 0, since the
inequality is already satisfied. This translates to the following so-called margin
loss (or a hinge loss):

Linargin([7,y],0) = max(0,m + e([z,y],2,0) — e([z, '], 2,0)). (2.12)

This loss is called a margin loss, because it ensures that there exists at least
the margin of m between the energy values of the correct outcome y and the
second best outcome ’. The margin loss is at the heart of support vector ma-
chines [Cortes, 1995].

Consider the case where m = 0:

Lperceptron ([, Y], 8) = max(0, e([z,y], 7,0) — e([z,9'], 2, 0)). (2.13)
If y = 4 (not §'), the loss is already minimized at 0, since
e([r,y],2,0) < e(lz,9],2,0). (2.14)

In other words, if a given example [z,y] is already correctly solved, we do not
need to change 6 for this example. We only update # when y # . This loss is
called a perceptron loss and dates back to 1950’s [Rosenblatt, 1958].

2.1.2 Softmax and cross entropy loss

It is often convenient to rely on the probabilistic framework, since it allows us
to use a large set of tools developed for probabilistic inference and statistical
techniques. As an example of doing so, we will now derive a probabilistic classi-
fier from the energy function e([xz,y], &, ). The first step is to turn this energy
function into a Categorical distribution over ) given the input x.

Let pp(y|z) be the Categorical probability of y given x. There are two major
constraints that must be satisfied:

1. Non-negativity: pg(y|z) > 0 for all y € Y.



8CHAPTER 2. BASICIDEAS IN MACHINE LEARNING WITH CLASSIFICATION

2. Normalization: Zy’ey po(y'|z) = 1.

Of course, there can be many (if not infinitely many) different ways to map
e([z,y], 2,0) to pe(y|x), while satisfying these two conditions [Peters et al.,
2019]. We thus need to impose a further constraint to narrow down on one
particular mapping from the energy function to the Categorical probability. A
natural such constraint is the maximum entropy criterion.

The (Shannon) entropy is defined as

H(ylz;0) = = > po(ylz) log pa(ylz). (2.15)
yey

The entropy is large if there is a large degree of uncertainty. In order to cope
with the issue of log 0, we assume that

. 0
H(y|z;0) = 0, if po(ylz) = {1 - (2.16)
Why is this natural? Because, it is our way to explicitly concede that we
are not fully aware of the world and that there may be somethings that are not
known, resulting in some uncertainty about our potential choice. This is often
referred to as the principle of mazimum entropy [Jaynes, 1957].

Then, we can convert the energy values {a; = e([z,y = 1],9,0),...,aq = e([x,y = d], 2, 0)}
assigned to different outcome classes Y = {1,2,...,d} into the Categorical prob-
abilities {p1,...,pq} by solving the following constrained optimization problem:
d d

— iDi — i log p; 2.17
max. i;ap ;p ogp (2.17)

subject to
p; >0, foralli=1,...,d (2.18)

d
> pi=1 (2.19)
=1

We can solve this optimization problem with the method of Lagrangian
multipliers. First, we write the unconstrained objective function:

d d d d
T(P1,- - pas My A y) = = > aipi — Y pilogpi+ Y Nilpi —57) +7(O_pi — 1),
=1 =1 =1 =1

(2.20)

where A1, ..., \q and v are Lagragian multipliers, and s1,...,sq are slack vari-
ables.
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Let us first compute the partial derivative of J with respect to p; and set it
to 0:

07 =—a; —logp; — 1+ X +7=0 (2.21)
opi
> logp; = —a; + i —1+7 (2.22)
< p;=exp(—a; + \; — 1 +7) > 0. (2.23)

We notice that p; is already greater than 0 at this extreme point, meaning
that the first constraint p; > 0 is already satisfied. We can just set A; to any
arbitrary value, and we will pick 0, i.e., A; = 0 for all i = 1,...,d. This results
in

pi = exp(—a;) exp(—1 + 7). (2.24)

Let us now plug it into the second constraint and solve for :

d
exp(—1+7) Z exp(—a;) =1 (2.25)
i=1
d
= —1+7y+log) exp(—a;) =0 (2.26)
i=1
d
=y=1- logZexp(—ai). (2.27)
i=1
By plugging it into p; above, we get
d
p; =exp(—a;)exp(—1+1— logz exp(—a;)) (2.28)
j=1

__ exp(-a) (2.29)

>, exp(—ay)

This formulation is often referred to as softmaz [Bridle, 1990].
Now, we have the Categorical probability p; = pe(y = i|z). We can then
define an objective function under the probabilistic framework, as

Lee([,y);0) = —logpo(ylz) = e([z,y),2,0) +log Y exp(—e([z,y'], 2,0)).
e (2.30)

We often call this a cross-entropy loss, or equivalently negative log-likelihood.
Unlike the margin and perceptron losses from above, it is more informative
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to consider the gradient of the cross-entropy loss:

eXP(*e([x, y/]a @7 0))
S ey exp(—el([r, 4], ,6))

=po(y’|z)

V9LCG([‘r7y]a @,9) = Vge([:r,y],g,é)) - Z
y' €y

VOQ([xvy,L Q’ 0))

= VQe([Iv y]7 g, 0) - Ey\w;@ [Vg@([l‘, y/]v g, 9))} . (232)

(@) (b)

This gradient, or an update rule since we update 6 following this direction, is
called a Boltzmann machine learning [Ackley et al., 1985].

There are two terms in this update rule; (a) positive and (b) negative terms.
The positive term corresponds to increasing the energy value associated with
the true outcome 7.2 The negative term corresponds to decreasing the energy
values associated with all possible outcomes, but they are weighted according
to how likely they are under the current parameters.

Let us consider the negative term a bit more carefully:

B Z exp(—pe([z,y'], 5,0)) Voe([z,y'], @, 0)). (2.33)

y'EY Zy//ey eXp(fﬂe([Iv y”]a a, 0))

5 was added to make our analysis easier. We often call 8 an inverse temperature.
B is by default 1, but by varying 8, we can gain more insights into the negative
term.

Consider the case where 8 = 0, the negative term reduces to

1
RS Z Vﬁe([x,y/]agve))‘ (234)
V|
y' ey
This would correspond to increasing the energy associated with each outcome
equally.
How about when 8 — co? In that case, the negative term reduces to

_vee(['r7g]a®a0)a (235)
where
9 = argmin e([x,y], &, 0). (2.36)
yey

When 8 — oo, we end up with two cases. First, the classifier makes the
correct prediction; g = y. In this case, the positive and negative terms cancel
each other, and there is no gradient. Hence, there is no update to the param-
eters. This reminds us of the perceptron loss from the earlier section. On the
other hand, if § # y, it will try to lower the energy value associated with the

2Recall that this is a loss which is minimized.
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correct outcome y while increasing the energy value associated with the current
prediction g. This continues until the prediction matches the correct outcome.

These two extreme cases tell us what happens with the cross entropy loss.
It softly adjust the energy values associated with all possible outcomes however
based on how likely they are to be the prediction. The cross entropy loss has
become more or less de facto standard when it comes to training a neural network
in recent years.

2.2 Backpropagation

Once you decide the loss function, it is time for us to train a classifier to minimize
the average loss. In doing so, one of the most effective approaches has been
stochastic gradient descent, or its variant. Stochastic gradient descent, which
we will discuss more in-depth later, takes a subset of training instances from D,
computes and averages the gradients of the loss of each instance in this subset
and updates the parameters in the negative direction of this stochastic gradient.
This makes it both interesting and important for us to think of how to compute
the gradient of a loss function.

Let us consider both the margin loss and cross entropy loss, since there is
no meaningful gradient of the zero-one loss function and the perceptron loss is
a special case of the margin loss:

Voe(lz,y],2,0) — Voe(lz,9],9,0), if Lnargin([z,y],0) > 0.
0, otherwise.
(2.37)

VGLce([-r7 y]a 9) = Vﬁ’e([xv y}v g, 9) - Ey\z;e [Voe([l"’ y/]v , 6))] . (238)

In both cases, the gradient of the energy function shows up: Vge([z,y], 2, 0)).
We thus focus on the gradient of the energy function in this case.

vﬂLmargin([Iv yL 0) = {

2.2.1 A Linear Energy Function

Let us start with a very simple case we considered earlier. We assume that x is
a real-valued vector of d dimensions, i.e., z € R%. We will further assume that y
takes one of K potential values, i.e., y € {1,2,..., K}. The parameters 6 consist
of

w1
w2
1. The weight matrix W = . e RExd
WK
by
by

2. The bias vector b = . e RX

bx
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We can now define the energy function as
e(z,y],2,0) = —w;/rx — by. (2.39)

The gradient of the energy function with respect to the associated weight
vector wy is then

Vu, e =—. (2.40)
Similarly, for the bias:
de
— =—1. 2.41
5 (2.41)

The first one (the gradient w.r.t. w,) states that for the energy to be lowered
for this particular combination (z,y), we should add the input = to the weight
vector wy. The second one (the gradient w.r.t. b,) lowers the energy for the
outcome y regardless of the input.

Let us consider the perceptron loss, or the margin loss with zero margin.
The first-term gradient, Vye([z,y],d,0), updates the weight vector and the
bias value associated with the correct outcome. With a learning rate n > 0,
the updated energy associated with the correct outcome, where we follow the
negative gradient,® is then smaller than the original energy function:

—(wy +nx) 'z — (by +n) = —wyz — by — |z +1) (2.42)
=e([z,y],2,0) — n(|lz|* +1) (2.43)
e(lz,y],2.,0). (2.44)

This is precisely what we intended, since we want the energy value to be lower
with a good combination of the input and outcome.

This alone is however not enough as a full learning rule. Even if the energy
value associated with the right combination is lowered, it may not be lowered
enough, so that the correct outcome is selected when the input is presented
again. The second-term gradient compliments this by having the opposite sign in
front of it. By following the negative gradient of the negative energy associated
with the input and the predicted outcome ¢, we ensure that this particular
energy value is increased:

—(wg —nz) "z — (bg —n) = e[z, 3], 2,0) +n(|z]* +1) (2.45)
> e([z,9],2,0). (2.46)

So, this learning rule would lower the energy value associated with the correct
outcome and increase that associated with the incorrectly-predicted outcome,
until the outcome with the lowest energy coincides with the correct outcome.
When that happens, the loss is constant, and no learning happens, because

y=74.

3We will shortly discuss why we do so later in this chapter.
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At this point, we start to see that the derivation and argument above equally
apply to z, the input. Instead of the gradient of the energy w.r.t. the weight
vector wy, but we can compute that w.r.t. the input = as well:

Ve = —wy,

assuming that x is continuous and the energy function is differentiable w.r.t. z.
By following the (opposite of the) gradient in the input space, we can alter the
loss function, instead of modifying the weight vectors and biases.

Of course this is absolutely the opposite of what we are trying to do here,
since the main goal is to find a classifier that classifies a given input x into the
correct category y. This perspective however leads us naturally to the idea of
backpropagation [Rumelhart et al., 1986].

2.2.2 A Nonlinear Energy Function

Instead of adjusting the weight vector W and the bias vector b, we can adjust the
input x directly in order to modify the associated energy value. More specifically,
with the perceptron loss, that is the margin loss with zero margin, when the
prediction is incorrect, i.e. y # 4, the gradient of the perceptron loss with respect
to the input z is*

VaLperceptron ([, Y], 0) = Vge([z,y],0) — Vze([z,7],0) = —wy +wy.  (2.47)

Similarly to the weight matrix and bias vector above, if we update the input
x following the opposite of this direction, we can increase the energy value
associated with the correct outcome y while lowering that with the incorrectly-
predicted outcome ¢. Although this is generally useless with a linear energy
function, as we discussed just now, this is an interesting thought experiment, as
this tells us that we can solve the problem either by adapting the parameters,
i.e. the weight matrix and bias vector, or by adapting the input data points
themselves. The latter sounds like an attractive alternative, because it would
break us free from being constrained by the linearity of the energy function.

There is however a major issue with the latter alternative. That is, we do not
know how to change the new input in the future (not included in the training
set), since such a new input may not come together with the associated correct
outcome. We thus need to build a system that predicts what the altered input
would be given a new input in the future.

To overcome this issue, we start by using some transformation h of the
input z, with its own parameters #’, instead of the original input z. That is,
h = F(x,0"). Analogously, we refer to the newly updated input by h. We obtain
h by following the gradient direction from Eq. (2.47). We now define a new
energy function e’ such that the combination (h, iL) is assigned a lower energy
than the other combinations if i and h are close to each other. Under this energy
function, the energy is low if this transformation of the input h = F(z,6’) is

4When it is clear that there is no latent (unobserved) variable z, I will skip ¢ for brevity.
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similar to the updated input h. This intuitively makes sense, since h is the
desirable transformation of the input x, as it lowers the overall loss function
above.

A typical example of such an energy function would be

¢ ([h,h],0") = 1|| o(Ux+¢) —h|J?, (2.48)
2 ——
=h

where U and c are the weight matrix and bias vector, respectively, and ¢ is an
arbitrary nonlinear function. h = o(U "z + ¢) would be some transformation of
the input x, as described above.

The loss function in this case can be simply the energy function itself:

Lo, ([h,h],0") = €'([h, h],0"). (2.49)

The gradient of the loss function w.r.t. the transformation matrix U is then:

Vo = ((h e h’)T (2.50)

where
B =o' (UTz+c) (2.51)
with ¢’(a) = 92(a), according to the chain rule of derivatives. ® denotes

element-wise multiplication. Similarly, the gradient w.r.t. the bias vector c is
Ve=(h—h)oN. (2.52)

Before continuing further, let us examine these gradients. If we look at V., the
first term, or its negation, since we want to minimize the energy, states that we
should change ¢ toward h away from h. If h is further away from iz, we need to
change ¢ more. The second term h’ is multiplied to (h — }Al) This term A’ is the
slope of the nonlinear activation function o at the current input U "« + ¢. If the
slope is positive, we should update ¢ following the sign of h—h , as usual. But, if
the slope is negative, we should flip the direction of ¢’s update, since increasing
¢ would result in decreasing h — h.

In order to analyze the gradient w.r.t. U, let us consider the gradient w.r.t.
one particular element of U, i.e., u;;. u;; can be thought of as the weight between
the i-th dimention of the input, z;, and the j-th dimension of the transformation,
h;. This gradient is written down as

0

auij

We already know what h; does: it decides whether the slope was positive or
negative, and thereby whether the update direction should flip. Because we
follow the opposite direction (since we want to lower the energy), the first term
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x;h; is subtracted from wu;;. This term tells us how strongly the value of z; is
reflected on the value of h;. Since h; is now being updated away, the effect of
x; on the j-th dimension of the transformation via u;; must be reduced. On the
other hand, the second term xiilj does the opposite. It states that the effect of
x; on the j-th dimension of the transformation, according to the newly updated
value ﬁj, must be reflected more on w;;. If the new value of the j-th dimension
has the same sign as x;, u;; should tend toward the positive value. Otherwise,
it should tend toward the negative value.

We can now imagine a procedure where we alternate between computing
h and updating U and ¢ to match h. Of course, this procedure may not be
optimal, since there is no guarantee (or it is difficult to obtain any guarantee)
that repeatedly updating U and c following the gradient of the second energy
function leads to improvement in the overall loss when h = o(U "= + ¢) is used
in place of the target h. When the second energy function is truly minimized
so that o(U'Tz + ¢) coincides with h, the loss will be smaller than the original
h = o(UTx+e¢). It is however unclear whether the loss will be smaller until this
minimum is achieved.

Instead, we can think of a procedure in which we update U and ¢ directly
without producing h as an intermediate quantity. Assume we take just a unit
step to update h:

h=h+ (w, —wy) (2.54)
= h—h=—-V,L(h). (2.55)
That is, we use the learning rate (or step size) of 1.
Then,
Vy =z (VaL(h) oK) (2.56)
Ve=ViLh)oN. (2.57)

In other words, we can skip computing h and directly compute the gradients of
the loss w.r.t. U and c using the gradient w.r.t. h.

Just like what we did with h (or originally ), we can check how we would
change this new = to minimize the second energy function e’. This is done by
computing the gradient of ¢/ w.r.t. z:

V,=U ((h e h') , (2.58)

which is similar to the gradient w.r.t. U. If we replace (h — h) with V, L(h), we
get
V.=U(V,LLh)OL). (2.59)

It is the third time we are discussing it, but yes, we know what h’ does here:
it decides the sign of the update. If we ignore A’ by simply assuming that o
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was e.g. an identity map (which would mean that b’ = 1), we realize that V,, is
linear transformation of Vj ° , as

V. =UV,. (2.60)
Contrast it against the red-coloured term below:
h=o(U' z+c) (2.61)

The red-colour term above can be thought of as propagating the input signal x
via UT to h. In contrast UV}, can be thought of as back-propagating the error
signal Vj, via U to the input =z.

You must see where we are heading toward now. Let us replace x once more,
this time, with z. In other words,

h=0o(U"z+c)
and
z=0c(V'z+5s).

We can analogously introduce yet another energy function ¢’ defined as

1
e"([z,2],0") = §||z - z°||27 (2.62)
where
2=z2—-V, (2.63)
=2z—-UVy,. (2.64)

Following the exactly same steps of derivation from above, we end up with

Vy =2(V,02)" (2.65)
Ve=V.,07%, (2.66)

where
V., =UVy. (2.67)

In one single sweep, we could backpropagate the error signal from the loss func-
tion all the way back to z and compute the gradient of the loss function w.r.t.
all the parameters, W,b,U, ¢,V and s. Of course, in doing so, we had to store
the so-called forward activation vectors, z,z and h, which is often referred to
book-keeping.

This process of computing the gradient of the loss fucntion w.r.t. all the pa-
rameters from multiple stages of nonlinear transformation of the input is called

5Whenever it is clear, we will drop some terms for both brevity and clarify. In this case,
Vh is VhL(h).
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backpropgation. This can be generalized to any computation graph without any
loops (though, loops can be unrolled for a finite number of cycles in practice)
and is a special case of automatic differentiation [Baydin et al., 2018], called
reverse-mode automatic differentiation.

Because reverse-mode automatic differentiation is efficient both in terms of
computation and memory (both linear), it is universally used for computing
the gradient and is well-implemented in many widely used deep learning tools,
such as PyTorch and Jax. This universality implies that once we decide on a
loss function and an energy function such that the loss function is differentiable
w.r.t. the parameters of the energy function, we can simply assume the gradient
would be readily available.

2.3 Stochastic Gradient Descent

Once we have defined an energy function and an associated loss function, we
can compute the gradient of this loss function w.r.t. the parameters. With the
gradient, we can update the parameters repeatedly so that we can minimize the
loss function. It is important to observe that we have defined the loss function for
each individual training example, and eventually our goal becomes minimizing
the average of the loss of all training examples. For a random reason, we will
use f;(0) to denote the loss function of the i-th example at 6, and thereby the
overall loss is

10 = 5 S0 (265)

When the overall loss is the average (or sum) of the individual loss functions,
we say that the loss is decomposable.

We can view such an overall loss function as computing the expected indi-
vidual loss function:

f(0) =E; [f:(9)], (2.69)
where i ~ U(1,..., N). Of course, we can replace this uniform distribution with
an arbitrary data distribution and write this as

f(0) = Evmpyusa [ (250)], (2.70)

although we will for now stick to the uniform indexing over the training set.
With Eq. (2.69), we also get

Vf=E[Vfi], (2.71)

because the expectation over a finite, discrete random variable can be written
down using a finite sum.

There are two constants we should consider when deciding how we are going
to minimize f w.r.t. §. They are the number of training examples N and the
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number of parameters dim(6) (if not confusing, we would use dim(f) and |6|
interchangeably.) Let us start with the latter |0|. If the number of parameters is
large, we cannot expect to compute any high-order derivative information of the
function f beyond the first-order derivative, that is its gradient. Without access
to higher-order derivative, we cannot benefit from advanced optimization algo-
rithms, such as Newton’s algorithm. Unfortunately, in modern machine learning,
|f] can be as larger as tens of billions, and we are often stuck with first-order
optimization algorithms.

If N is large, it becomes increasingly burdensome to compute f not to men-
tion Vf directly each update. In other words, we can only expect to use the
true gradient of f only when there are few training examples only, i.e., small N.
In modern machine learning, we are often faced with hundreds of thousands, if
not millions or billions, of training examples, and it is often impossible for us to
exactly compute the overall loss. In short, we are in a situation where we cannot
even use the full, true gradient information to update the parameters.

In order to cope with large N and large ||, we often resort to a stochastic
gradient estimate rather than the full gradient, where the stochastic gradient is
defined as

where i; was drawn from the uniform distribution over {1,...,N}. We then
update the parameters using this stochastic gradient estimate by

9t+1 = Qt — ¢ Gi, - (273)

In doing so, it is a usual practice to maintain a set of so-called checkpoints and
pick the best one within this checkpoint set. We will discuss how we pick the
best checkpoint according to which criteria in the next section in more detail,
as this is where optimization and learning deviate from each other.

For now, let us stick to optimization and in particular iterative optimization.
When thinking about optimization, there are two distinct concepts that are
equally important. The first one is convergence. With convergence we mean
whether iterative optimization gradually moves the iterate 6; toward a desirable
solution. A desirable solution could the global minimum (if it exists), any local
minimum or any extremum (where the gradient is zero.) It is important to know
whether the iterate converges to such a desirable solution and if so, at which rate.
The second important concept is the descent property. An iterative optimization
algorithm is descent if it always makes progress, that is, f(6;41) < f(6;) for all
t.

As we will learn about it shortly in the next section, the desirable solution
is not defined with the overall loss function f. Rather, the desirable solution for
us is defined using another function f*. This function f* is similar to f almost
everywhere over § but these two functions differ. It is thus more desirable for
us to enumerate a series of 6;’s with small f(6;) values and eventually pick one
using f*(0;). In other words, it is not convergence but the descent property.
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2.3.1 Descent Lemma

We start by stating and proving one of the most fundamental results in opti-
mization, called the descent lemma. According to the descent lemma, the fol-
lowing inequality holds when V f is an L-Lipschitz continuous function, i.e.,

IVf(z) = Vil < Lz —yl|:

F(y) < F@) + V7@ (g - 2) + 2y — ol (274

This inequality allow us to upper-bound the value of a function at a point y
given the value as well as the gradient at another point x.
Let g(t) = f(x + ¢t(y — x)) so that g(0) = f(z) and ¢g(1) = f(y). Then,

1 1
£6) - 1) = 9(1) = 90) = | g udu= [ Vf(a+ tly ~ )y - o)t
0 0
(2.75)
By subtracting Vf(z) " (y — x) from both sides, we get
1
16) = £@) = V1@) =) = [ (Vha+ =) = V1) (=)
(2.76)
We can upperbound it using the Cauchy-Schwarz inequality, i.e. a'b < ||a||||b]:
1
fly) = f(@) = V(@) (y—2) < /O IVf(@+t(y —z)) = VI(@)|lly — [dt.
(2.77)

We can use the assumption above that V f is an L-Lipschitz function to simplify
it into

f@) = F(@) = V@) Ty —2) < /

which is in turn

1
L
Lty —alP*dt = Slly - =|*,  (2.78)

F(y) < F@) + V7@ (g 2) + 2y (279

If we assume that N is not too large, we can compute the gradient exactly and
update the parameters following the negative gradient direction:

9t+1 == Ht - atVf(Qt) (280)
e 0t+1 — 6‘t = —atVf(Gt) (281)

Let us plug (6, 0:+1) into (z,y) in the descent lemma:
L
FOr1) < f(00) =l VFO)I” + a2 IV F (O (2.82)

= 100 — (o — S VO] (283)
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Since ||V £(6;)|* > 0, we want to find o, that maximizes —Za? + a;,. We simply
compute the derivative of this expression w.r.t. a; and set it to zero:

1
—Loay+1=0 << oy = I (2.84)

In other words, if we set the learning rate to 1/L (that is, inverse proportionally
to how rapidly the function changes), we can make the most progress each time.
Of course, this does not directly apply to the stochastic case, since the descent
lemma does not apply to the stochastic gradient estimate as it is.

2.3.2 Stochastic Gradient Descent

Resuming from the descent lemma above, we will use the stochastic gradient
update rule from Eq. (2.73). Let’s restate the stochastic gradient rule:

Opp1 = 0r — args, == 0i11 — 0y = —ug;,. (2.85)

Plugging in (0;,0;+1) into the descent lemma, we get

L
FOr1) < f(0) — iV f(0:) gi, + af§||9m||2- (2.86)
We are interested in the expected progress here over iy ~U(1,...,N):
L
E[f(0r41)] < £(0:) — sV £(6:) "E[gi,] + a§§E||9it||2 (2.87)
L
= [(0:) — | [VF(O0)]” + @ngH!]i, [ (2.88)
N—— NI

== —(b)
because V f(0) = E;, [g,,]-

There are two terms that are both positive but have opposing signs. The first
term (a) is good news. It states that on expectation we would make a positive
progress, that is, to lower the expected value after a stochastic gradient step.
Since this term is multiplied with oy, we may be tempted to simply set a; to
a large value to make a big improvement on expectation. Unfortunately, this is
not the case because of the second term (b).

Although the stochastic gradient is an unbiased estimate of the full gradient,
it is still a noisy estimate. The second term (b) reflect this noise. Imagine we
are close to the/a minimum of f such that Vf(6;) = 0. The second term (b) is
then the trace of the covariance of the stochastic gradient. Because it is not zero
(i-e. noisy), stochastic gradient descent will not decrease the objective function
on expectation but may increase it.

In order to control away the second term (b), we must ensure that «; is small
enough so that a; > a2, or must assume further constraints on f. If we decrease
oy over t , stochastic gradient descent will on expectation make progress (i.e.,
descent) and eventually passes by the/a minimum of f. More details on the
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convergence rate(s) of stochastic gradient descent are out of the scope of this
course.

In summary, we use stochastic gradient descent in modern machine learning,
and with a small learning rate stochastic gradient descent exhibits the descent
property on expectation. We will therefore worry less and rely on stochastic
gradient descent throughout the course.

2.3.3 Adaptive Learning Rate Methods

Although we have approached the problem of stochastic optimization by stating
that we follow the (negative) stochastic gradient estimate at each update, it is
not necessarily the only way to view this problem. We can instead view the
problem of learning as online optimization. In online optimization, or online
learning, we play a game in which at each turn t we receive the stochastic
gradient estimate g = Vo f;, (0:—1) and use it to update our estimate of the
parameters, 0;_1,9; — 60;. We receive the penalty as the difference between
the stochastic estimate of the loss at the updated parameter and that at the
optimal parameter configuration,’ i.e., f;, (60;) — fi,(0*). We call this penalty a
regret, since this quantifies how much better we could’ve done in hindsight (that
is, regret.) The goal is to minimize the regret over time:

T

R(T) =" fi,(00) — f3,(0%). (2.89)

t=1 >0

The regret must grow sub-linearly, i.e, R(T) = o(T), since linear growth, i.e.,
R(T) = O(T), implies that the learning algorithm is not converging toward the
optimal solution (or its associated minimum value.)

We (try to) achieve this goal by finding an appropriate update rule that
maps 6;_1 and g; to 6;. In doing so, it is relatively straightforward to think of
the following simplified framework, that generalizes stochastic gradient descent:

9,5 <— Gt_l —+ m ® gt, (290)

where 7; is a collection of learning rates for all parameters.” By adapting 7,
appropriately, we can achieve the sublinear regret. In SGD above, 7; was often a
scalar, i.e. ni = ] for all i # j. SGD in fact achieves the sublinear regret, O(v/T)
with n; = ﬁ, but it turned out that we can do better either asymptotically or

6The optimality in this context of online adaptation is defined as the final solution reached
by the online optimization procedure. If we follow the direction that is correlated with the
gradient, we know that we are making progress on average toward the local extreme configu-
ration due to the decent lemma above. We thus know that asymptotically the optimal solution
here 6* would have a lower loss than any other intermediate points. This makes the online
learning perspective different from the optimization perspective from above.

It is possible to use a matrix 7; instead of a vector 7, and there could be a good chance that
we would achieve a better regret bound. Unfortunately, this could increase the computationally
complexity dramatically for each update, from O(|0]) to O(|0|?), which can be prohibitive in
many modern applications.
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practically by taking into account the loss function landscape, that is, how the
loss changes w.r.t. the parameters, more carefully.

Adagrad [Duchi et al., 2011]. For each parameter %, the magnitude of the
partial derivative of the loss, (g?)?, tells us how sensitive the loss value was to
the change in . Or, another way is to view it as the impact of the change in

6 on the loss. By accumulating this over time, Z:/:l(gz,)2, Wwe can measure

the overall impact of % on the loss. We can then normalize each update inverse-
proportionally in order to ensure each and every parameter has more or less the
equal impact on the loss. That is,

1

AL

Op 01+ : © gt (2.91)
1
t 161

=1 (Qt/ )2

The regret of Adagrad is O(v/T), just like that of SGD, assuming ||g:|| < oo.
It however often decreases faster especially when many parameters are inconse-
quential (sparse) and/or quickly learned (because the accumulated magnitude
rapidly grows and its inverse converges to zero quickly.)

Adam [Kingma and Ba, 2014]. A major disadvantage of Adagrad above is
that the per-parameter learning rate decays monotonically, often resulting in a
premature termination. This is especially problematic with a non-convex opti-
mization problem, such as the ones in training deep neural networks, as it may
require many updates for the optimizer to get close enough to a good solution
in the parameter space. We can address it by not accumulating the magnitude
of the gradient over the full duration but using exponential smoothing:

v < Bove—1 + (1 — Bu)gs, (2.92)
where 3, € [0,1]. Then, we use ,/v; as the learning rate instead, leading to
9i
where € > 0 is a small scalar to prevent the degenerate case.

Adam furthermore uses exponential smoothing to reduce the variance of the
gradient estimate as well:

0 < 0, + (2.93)

My = Brmmip—1 + (1 — Bm) gt (2.94)

This results in the following final update rule:

0 0F_| + ot (2.95)
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where « € (0,1] is a default step size.

Adam also has O(ﬁ ) regret and exhibits an overall similar asymptotic
behaviour to Adagrad. Adam is however often favoured over Adagrad, because
the per-parameter learning rate is not monotonically decreasing anymore. Since
it was proposed earlier, there have been a number of improvements to Adam,
although they are out of the scope of this course.

Overall, whenever we refer to stochastic gradient descent in the rest of the
course, we are generally referring to Adam or its variants that adaptively update
the learning rate of each parameter on the fly. Although it is just a folk wisdom,
quite a few researchers, including myself, attribute the recently-observed surpris-
ing successes of many conventional machine learning algorithms with gradient-
descent optimization to these adaptive learning rate algorithms.

2.4 Generalization and Model Selection

2.4.1 Expected risk vs. empirical risk: a generalization
bound

A risk is another word we use to refer to the loss. In this section, we will use risk
instead of loss, as the former is more often used in this particular context. If
you are confused by the term “risk”, simply read it out loud as “loss” whenever
you run into it.

For each example (z,y), we now know how to construct an energy function
and also an associate loss function L([z,y],0). Let pgata(z,y) be some unknown
distribution from which we draw an example (z,y). We do not know what
this distribution is, but we assume that this is the distribution from which the
training examples were drawn and any future instance would be drawn as well.®
Then, our goal must be to minimize

R(0) = Eqata [L([2,y], )] - (2.96)

Unfortunately, this expected risk is not computable, and we only have access
to a sample-based proxy to the expected risk, called the empirical risk:

R 1
R(O) = 5 3 Ly 0). (2.97)
n=1

For brevity and clarity, let S, = >_,_, L([z*,4"],0). Then, we can express these
risks as

1 . 1
R(Q) = Edataxmxdata |:NSN:| 5 and R(G) = NSN (298)

The former holds because each instance (z,y) is drawn independently from the
same data distribution.

8This is certainly not true in reality but is a reasonable starting point. We will discuss later
in the course what we can do if this assumption does not hold, hopefully if time permits.
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Let’s assume that an individual loss is bounded between 0 and 1 (which
would be the case for the 0-1 loss.) Then, we can use the Hoeffding’s inequality
to get

p(|R() — R(0)| > €) < 2exp (— 2Ne)* 0)2> =2exp (—2N€?).  (2.99)

Yo (1—

This inequality tells us that the gap between the expected and empirical risks
shrinks exponentially with N, the number of training examples we use to com-
pute the empirical risk. This inequality applies to any 6, implying that this
convergence of the empirical risk toward the expected risk is uniform over the
parameter space (or the corresponding classifier space.) Such uniform conver-
gence is nice in that we do not have to worry about how well learning works
(that is, what kind of solution we end up with after optimization), in order to
determine how much deviation we would anticipate between the empirical risk
(the one we can compute) and the expected risk at any 6. On the other hand,
there is a big question of whether we actually care about most of the parameter
space; it is likely that we do not and we only care about a small subset of the
parameter space over which iterative optimization, such as stochastic gradient
descent, explores. We will discuss this a bit more later, but for now, let’s assume
we are happy with this uniform convergence.’

Let’s imagine that someone (or some learning algorithm) gave me 6 that is
supposed to be good with a particular empirical risk ]:2(9) Is there any way
for me to check how much worse the expected risk R(6) would be, based on
the Hoeffding’s inequality above? Of course, such a statement would have to be
probabilistic, since we are working with random variables, R(6) and R(6).

The inequality above allows us to express that
IR(A) — R(A)| < e (2.100)

with some probability at least 1—¢. Be aware that the direction of the inequality
has flipped.

If |R(0) — R(0)| < ¢, we know that R(A) < R(6) + e. We are interested in
this latter inequality, because we want to upper-bound the expected (true) risk.
If the true risk was lower than the empirical risk, we are happy and do not care
about it. We want to know if we were to be unhappy (that is, the expected risk
was greater than the empirical risk), how unhappy we would be in the worst
case.

Because we want to make such a statement with the probability of at least

91In practice, we are not.
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1 — 6, we equate the right-hand side above with §:

2exp(—2Neé?) =4 (2.101)
= — 2N = logg (2.102)
2
== —log 5 (2.103)
1 2

Combining these two together, we can now state that with probability at

least 1 — ¢, we have
R(9) < R(0) + L o2 (2.105)
Von %85 '

given the model parameter 6.
This generalization bound makes sense. If we want to get a strong guarantee,
e., (1 —9) = 1 (equivalently 6 — 0), we end up with a much loser bound,

since the bound is O(y/log ). We can counter this by collecting more training

examples, i.e., N — 0o, since the bound shrinks rapidly as N grows: O(N *%).

This bound looks reasonable, but there is a catch. The catch is that this is
based on a single, given model 6. In other words, this bound is too optimistic,
as in reality, we often need to choose 6 ourselves among many alternatives by
the process of learning. In doing so, we need to consider the possibility that
we somehow picked one that has the worst generalization gap |R(8) — R(6)|. In
other words, we need to consider the generalization bounds of all possible model
parameters.

For simplicity, we assume that § € © where © is a finite set of size K.
Learning is then a process of selecting one of K possible parameter configura-
tions based on data. We use the idea of so-called union bound from the basic
probability theory, which states that

N
pletUeyU---Uep) SZp(ei). (2.106)
i=1

This is somewhat obvious, because a pair (e;, ;) may not be mutually exclusive.
Think of a Venn diagram. With this, we want to compute

P(UseolR(0) — R(0)| > €) < > p(|R() — R(0)| > €) < 2|0 exp (—2Ne?) .
0coe
=2exp(log |©]—2Ne?)
(2.107)
We can follow the exactly same logic above:
2exp(log |©] — 2Ne?) =6 (2.108)
1 — log 26
= 108101~ log 20 (2.109)

2N
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This makes sense, as the generalization bound now depends on the size of O,
our hypothesis space. If the hypothesis set is large, there is a greater chance of
us finding a solution that is good empirically IA%(G) J but is on expectation very
bad R(6) 1. This also implies that we need N (the number of training examples)
to grow exponentially w.r.t. the size of the hypothesis space ©.

This bound only works with a finite-size hypothesis set © without favouring
any particular parameter configuration. In order to work with an infinitely large
hypothesis set, we must come up with different approaches. For instance, the
Vapnik—Chervonenkis (VC) dimension can be used to bound the complexity
of the infinitely large hypothesis set [Vapnik and Chervonenkis, 1971]. Or, we
can use the PAC-Bayes bound, where a prior distribution over the (potentially
infinitely large) hypothesis set is introduced [McAllester, 1999]. These are all
out of the scope of this course, but we briefly touch upon the idea of PAC-Bayes
bound here before ending this section.

PAC-Bayesian bound. The original PAC-Bayes result states that

R 1 N+1
D BRQ)IERQ) < (Dew@iP)+10 ™) 2110
with probability at least 1 —¢. Although this inequality looks quite dense, these
terms are extremely fiescriptive, once we define and learn how to read them.
First, R(Q) and R(Q) are defined analogously to R(#) and R(#), except that
we marginalize out 6 using the so-called posterior distribution Q(6). That is,

R(Q) = Eq [R(9) (2.111)
R(Q)=E [R(e)}. (2.112)

@ can be any distribution and can depend on data D consisting of N examples.

Because we continue to assume we work with a bounded loss, we can assume
that R(Q) € [0,1] and R(Q) € [0, 1]. Then, we can define Bernoulli distributions
using these two values as the means. We denote these distributions as B(R(Q))
and B(R(Q)), respectively. You can think of these distributions as how expected
and empirical risks vary as 6 follows the distribution @). We can then measure
the discrepancy between these two quantities, which is by definition the general-
ization gap, by using KL divergence. This is the left-hand side of the inequality
above.

The right-hand side is then the bound on how much discrepancy between
the empirical and expected risks there could be on average given ). There are
two terms here. The first term is the KL divergence between the posterior @
and the so-called prior P, where P is constrained to be independent of data
D. You can think of P as our prior belief about which parameter # would be
good. On the other hand @ is our belief after observing the data D. The first
term therefore states that the discrepancy will be greater if our prior belief was
incorrect, that is, our belief after observing data changed dramatically from the
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prior belief. This effect will however vanish rapidly as the number of training
examples increases due to %

We can read two things from the second term % log %. Because ¢ is in the
denominator, we know that we would potentially get a greater discrepancy if
we want to get a stronger guarantee, that is, § — 0. w vanishes toward 0
as the data size increases, i.e. N — 0o0. The rate of this convergence is however
quite slow, i.e. sublinear.

Similarly to what we did earlier, we can turn this inequality in Eq. (2.110)
into a generalization bound. In particular, we use the Pinsker’s inequality. In
our case with Bernoulli random variables, we get

(R@ - R@) < 3D (BRQ)IBRQ). (2.113)
Then,
IR(Q) - R(Q)| < \/21\] (DKL(QHP) —HogN;— 1). (2.114)
We end up with the following generalization bound:
R(Q) < R(Q) + \/2;\, (DKL(QIIP) +log N(S“) (2.115)

Unlike the earlier generalization bound, and its variants, this PAC-Bayesian
bound provides us with more actionable insights. First, we want the posterior
distribution @) to be good in that it results in a lower empirical risk on average. It
sounds obvious, but the earlier generalization bound was designed to work with
any parameter configuration (uniform convergence) and did not tell us what
it means to choose a good parameter configuration. With the PAC-Bayesian
bound, we already know that we want to choose the parameter configuration so
that the empirical risk is low on average. In other words, we should use a good
learning algorithm.

The posterior distribution ¢ however cannot be too far away from where
we start from. As the bound is a function of the discrepancy between () and
our prior belief P. Flipping the coin around, it also states that we must choose
our prior P so that it puts high probabilities on parameter configurations that
are likely to be probable under the posterior distribution @. In other words, we
want to ensure that we need a minimum amount of work to go from P to @, in
order to minimize the generalization bound.

In summary, the PAC-Bayesian bound tells us that we should have some
good prior knowledge of the problem and that we should not train a predictive
model too much, thereby ensuring that the posterior distribution @ stays close
to the prior distribution P. This will ensure that the expected risk does not
deviate too much from the empirical risk.
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2.4.2 Bias, Variance and Uncertainty

An alternative way to write the 0-1 loss is to rely on the squared difference
between the true label and predicted label, in the case of binary classification,
where there are only two categories to which the input may belong. Let us use
y € {—1,1} to indicate two classes. Then,

L(r,0).6) = 3~ 9(,0)°, (2116)

where ¢(z,0) = argmin.c(_1 1y e([z,c],0). If y and ¢ are the same, this loss is
zero. Otherwise, it is

As we discussed earlier, an instance (z,y) is drawn from an underlying data
distribution pgata(z,y) which can be written down as

pdata(m> y) = pdata(m>pdata<y‘x) (2~117)

following the definition of conditional probability.

We can furthermore imagine a distribution over 6 as well: ¢(¢). This distri-
bution may be to have come out of nowhere. It is however only natural to have
a distribution over @ rather than a single value of 6 if we realize that learning
always depends on some randomness, either due to arbitrary symmetry breaking
in optimization, random sampling of training examples or sometimes the lack
of technical capabilities in reducing noise in our systems. We will discuss this
uncertainty in the model parameters in depth later, and for now, we assume
that this ¢(6) is given to us.

We can then write down the expected 0-1 loss for binary classification under
this (unknown) data distribution over the model parameters as:

ey — 9 0))7 o By [Eyy [0~ )] + 42 (2.118)
+Eo [(9(2,0) — f)?) + i (2.119)
2B, [(y — 1) (32, 0) — )] — 21y ]

(2.120)
=E, By [(v— 1)) +Eo [(9(2.0) - 1,)7]  (2.121)
=(a) =(b)
28,1, B (4 = pd 0]~ i)+ ()7
=0 =(c)
(2.122)
where
py =Eyo [y], (2.123)

fry = Eg [§(x,0)]. (2.124)
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There are so many terms we need to consider in this equation, but we will
consider them one at a time, from the back. First, let us start with (u, — ).
This term (c) tells us about how well our learner captures the mean of the true
output y. This term does not care about how much variance there is either under
the data distribution pgata(y|z) nor under the model distribution ¢(6). It only
talks about getting the outcome correct on average. This term is referred to as
a bias. When this term (c) is zero, we call our predictor unbiased.

The second term from the back, which is zero, is the (negative) covariance
between the true outcome y and the predicted one g(x, ), both of which are
random variables. Because we did not assume anything about ¢(f), in general
we cannot assume 6 is in anyway correlated with y|z, implying that there should
not be any covariance. We can ignore this term.

Let us continue with the two remaining terms, (a) and (b). The first term (a)
is the variance of the true outcome y. This reflect inherent uncertainty present in
the true outcome given an input z. This inherent uncertainty cannot be reduced,
since it is not what we control but is given to us by the nature of the problem
we are tackling. If this quantity is large, there is only so much we can do. We
often refer to this as aleatoric uncertainty or irreducible uncertainty.

The second term (b) is also uncertainty, as it measures the variance arising
from the uncertainty in the model parameters. This uncertainty is however con-
trollable and thereby reducible with efforts, since it arises from our uncertainty
q(0) in choosing the parameters §. When the model is simpler, we tend to have a
better grasp at learning and can reduce this reducible (or epistemic) uncertainty
greatly. When the model is complex and thereby exhibits many symmetries that
must be broken arbitrarily, it is difficult (if not impossible) to reduce this epis-
temic uncertainty much. This term is often referred to as variance.

It should be quite clear at this point that there must be some inherent trade
off between the bias (c¢) and the variance (b). The more complex a classifier
is the higher variance we end up with, but due to its complexity, it would be
able to fit data well, resulting in a lower bias. When a classifier is simple, the
variance will be lower, but the bias will be higher. Learning can thus be thought
of as finding a good balance between these two competing quantities.!?

The explanation above is slightly different from a usual way in which bias-
variance tradeoff is described [Wikipedia contributors, 2023]. In particular, we
are considering a generic distribution ¢(f) that may or may not be directly
related to any particular training dataset, when the conventional approach often
sticks to the strong dependence on the training dataset and the distribution over
the training set. This is a minor difference, but this can come in handy when
we start thinking about more exotic ways by which we come with ¢(6). If time
and space permits later in the course, we may learn one or two techniques that
involve such exotic techniques, such as transfer learning and multi-task learning.

10T must emphasize here that the complexity of a classifier is not easy to quantify. When I
speak of ‘complex’ or ‘simple’ here, I am referring to this mythical measure of the classifier’s
complexity and do not mean that we can compute it easily.
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2.4.3 Uncertainty in the error rate

We first need to talk about random variables. In probability courses you prob-
ably have taken earlier, you must have learned about the strict distinction be-
tween random variables and non-random variables. In fact, a random variable
does not take any particular value but carries with it a probability distribution
over all possible values it can take. Once we draw a sample from this distribu-
tion, this value is not random anymore but is deterministic.

It unfortunately becomes easily cumbersome to explicitly distinguish be-
tween random variables and the samples drawn from their distributions. That
is one of the reasons why we have not explicitly stated whether any particular
variable is random or not so far. Another reason, perhaps more important, is
that almost every variable in machine learning is random, because almost every
variable depends on a set of samples drawn from an unknown underlying dis-
tribution. For instance, the parameters 6 are random, because either they were
initialized by drawing a sample from a so-called prior distribution, or because
they were updated using a stochastic gradient estimate that is a function of a
set of samples drawn from the data distribution. From this perspective, in fact,
prediction § we make using a model parametrized with 6 is a random variable
as well. The loss, or the risk, is thereby a random variable, as we have seen in
§2.4.1.

Confidence interval: capturing test set variation. Let us stick to the
zero-one loss (although this is not strictly necessary, it makes the following
argument easier to follow.) The loss [ is a function of (1) a particular observation
[,y] drawn from the data distribution pqas, and (2) the parameters 6. Both of
these are sources of randomness, but for now, let’s assume that 6 is given to us
as a fixed value, rather than as a random variable with a distribution attached
to it. If we assume to have access to N test examples, that were independently
drawn from the identical distribution pgasa, we have

(117127"'alN)7 (2125)

where each [, is itself a random variable. Each and every one of these N ran-
dom variables follows the same distribution. Because these all follow the same
distribution, they also share the mean and variance:

p=E[l] and 0 = V[I] < oo, (2.126)

where we safely assume that the variance is finite.
According to the central limit theorem, we then know that

VN(Iy — 1) =2 N(0,62), (2.127)

where —¢ refers to the convergence in distribution, and

I, —iil (2.128)
N_Nn:1 n- .
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Iy is a random variable that refers to the average loss computed over the N
examples. In other words, with larger IV, we expect that the average accuracy
we get from considering N examples is centered at the true average p with the
variance %2 So, the more N , the more confidence we have in trusting that the
sample average does not deviate too much from the true average. With small
N, however, we cannot be confident that our sample average accuracy is close
enough to the true average, and this lack of confidence is proportional to the
true variance underlying the accuracy. Unfortunately, we do not have access
to the true variance of the accuracy but often can get a rough sense of it by
considering the sample variance.

If N is large, we can compute the confidence interval** and use it to compare
against another classifier or your prior expectation on the accuracy. For instance,
because the accuracy estimate converges to the normal distribution, we can use
so-called t-test, since the difference between the true mean and the mean of
the estimate converges toward the Student’s t distribution. In that case, the
confidence interval for the binary accuracy (simply 1 — I*, where [* is the true
loss of the classifier) is given by

/ 1—z / 1—z
CIN[1—ZN In(L—1Iy) L1 =In) + In(L—1Iy) (2.129)

where Z is determined based on the target confidence level v. If v = 0.99, Z
would be approximately 2.576.

Let [y be the accuracy by the existing classifier. We will assume this is the
exact quantity because we have been running this classifier for a very long time.
We can use this confidence interval to get some sense of whether we want to
replace the existing classifier with this new one. If [ lies comfortably outside
this confidence interval, we would feel more comfortable considering this option.

This approach focuses on estimating the error rate, and associated confi-
dence, given a classifier . In other words, the randomness we are considering
stems from the choice of the test set D. If we repeatedly obtain new test sets and
compute the associated confidence intervals, we anticipate the true accuracy to
be included in the confidence interval approximately v times. This however tells
us only one side of the story. Let us consider two additional aspects.

111

Credible interval: capturing model variations. There are quite a few
factors that make our learning algorithm stochastic. First, our objective function
tends to have many local minima, arising from reasons such as co-linear features
and scaling invariance. For instance, if we use the zero-one loss, the following
classifiers are all equivalent:

g=arg max (a (WTx + b))y, a >0, (2.130)

y=1,..., |y

11The confidence interval for a quantity with the confidence level v means that if we repeat
the process of inferring the target quantity and measure the confidence interval, the true target
quantity would be included in the confidence interval proportional to ~.
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where (-) ; refers to the j-th element of the vector, because the zero-one loss is
invariant to the multiplicative scaling of the energy value. A pair of co-linear
features are defined to have linear relationship given the target outcome. Imagine
that

z; = ax;, (2.131)

when y = ¢. We then say that (z;,2;) are co-linear given y = c. In this case,
the following two energy functions are equivalent:

e(fz,c],0) = = |we,. s Wepiseoy 0, We g | T — De, (2.132)
=We,j |
e([x,c,0")=— |w 0 lw ; w r—0b (2.133)
b b C717"'7 PR ] a Cy2y * * ) C,lftl CH .

for any o # 0. We cannot really distinguish these two energy functions.

There are more of these, which we will touch upon over the rest of the
course, and they all lead to the issue that our learner will pick one of these
equivalent (or nearly equivalent) solutions at random. Such randomness arises
from many factors, including stochastic initialization, stochastic construction
of minibatches in stochastic gradient descent and even non-determinism in the
implementation of underlying compute architectures. That is, learning is not
really a deterministic process but a random process, resulting in a random 6. In
other words, every time we train a model, we are effectively sampling 0 from a
conditional distribution over a random variable 6 given the training set D, i.e.,
0 ~ p(A|D). This distribution is often referred as a posterior distribution, and if
time permits, we will learn about this distribution more carefully in the context
of Bayesian machine learning later.

We considered Iy, the test set accuracy, in Eq. (2.128) as a random variable
whose stochasticity arose from the choice of the test set. Here we however con-
sider it as a random variable whose randomness is induced by the choice of the
parameters 6 rather than the test set D’. This is understandable now that 6 is
a random variable rather than a given deterministic variable as before. We can
then write the probability of Iy as

p(in|D, D') = / p(in|0. D')p(61D)ds, (2.134)

where we safely assume 6 is independent of the test set D’.

It may be confusing to see p(Ix|0, D'), since we often get one test accuracy
(loss) once we have a model and a fixed test set. This is however not true in
general, as running a model, that is performing arg max on the energy function,
is often either noisy on its own or computational intractable so that we must
resort to some kind of randomization.

We can then derive a so-called credible interval of the test-set accuracy, such
that the true test-set accuracy would be contained within this interval with the
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probability «y. Let v+ = 1—« for convenience. Then, we are looking for an interval
7, ul:

p(iy < 1D, D) = % and p(ly > u|D, D) = % (2.135)
This credible interval is reasonable when p(Iy|D, D’) is unimodal, but this may
not be the case. The probability density may be concentrated in two well-
separated sub-regions, in which case this credible interval would be unnecessarily
wide and uninformative.
In that case, we can try to define a credible region C, which may not be
contiguous. The credible region is define to satisfy

| plixID, Dty =, (2.136)
INeC
p(In|D,D") > p(Ix|D, D') for all Iy € C Al ¢ C. (2.137)

The second condition is often referred as density dominance. Effectively, the
credible region consists of one or more contiguous sub-regions such that no point
within these sub-regions have lower densities than any other points outside these
regions. By inspecting this credible region, we can get a good sense of how the
true accuracy (or error) rate would be with the probability of .

In practice, we often cannot compute any of those quantities exactly, because
the posterior distribution 8| D is tractable nor not even known. Instead, we use
Monte Carlo approximation by training models many times, benefitting from
the stochasticity in learning. Let {601,...,605} be a set of resulting models. For
each 0,,, we draw a sample of the test loss [X}, resulting in {Z}V, ceey ZAN4} We can
then use these samples to characterize, understand and analyze how the true
test accuracy would be with the learning algorithm given the training and test
sets, D and D’.

Capturing training set variations. In addition to the randomness arising
from the construction of the test set as well as the learning process itself, there
is yet another source of randomness we want to take into account. This source
of randomness arises from the construction of the training set D. If we continue
from the credible region above, we do not want p(Iy|D, D) but rather

p(0) = 33 plli| D, D)p(D)p(D')ADAD . (2.138)
D D’

In words, we want to check the variability of the test-set accuracy [ after
marginalizing out both training and test sets. Unfortunately, we often do not
have access to the distribution over the dataset. Rather, we are only given a
single dataset which is split into two data sets; one for training and the other
for evaluation.

In this case, we can resort to the idea of so-called bootstrap resampling. The
idea is simple: (1) we resample N examples from the original set of N training
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examples with replacement, (2) compute the sample statistics of interest and
(3) repeat (1-2) M times. In step (2), we can split the resampled set into the
resampled training set and the resampled test set. We use the resampled training
set to train a model and then the resampled test set to evaluate the tral\i/}led
model to obtain l_rz),l. After M such iterations, we end up with {l_(]\?l)}m_l
These sampled statistics then serve as a set of samples drawn from p(!), allowing
us to get a good sense of how the proposed learning algorithm works on this
particular problem (not a particular dataset).

There are many ways to characterize the uncertainty in evaluating how well
any learning algorithm works. Although we have considered a few aspects of un-
certainty we should consider in this section, there are many more ways to think
of this problem. For instance, if we want to compare two learning algorithms,
how should we take into account the uncertainty? If there is uncertainty in my
learning algorithm, is there a better way to benefit from this uncertainty? We
will touch upon some of these questions in the rest of the course.

2.5 Hyperparameter Tuning: Model Selection

We often use the term ‘hyperparameter’ to refer to anything that we can con-
trol in order to affect learning. For instance, in the case of stochastic gradient
descent, a learning rate « (or any knobs in a learning rate scheduler) is a ma-
jor hyperparameter. There are so many hyperparameters in machine learning.
For instance, the parameters of the disdtribution one uses to initialize the model
parameters are hyperparameters. The choice/parametrization of an energy func-
tion is yet another hyperparameter which is highly complex. We will use A to
refer to the collection of all hyperparameters.

We have learned so far that the model parameters 6 should be estimated
from data D. How should we then estimate the hyperparameters A 7 We start
by realizing that learning corresponds to

Learn(D; A\, €) = arg nbin R(0; D). (2.139)

In other words, learning is the process of minimizing the empirical risk. This
learning process is however not only a function of data D but also of the hyper-
parameters A and noise €.

We now need to find the right set of hyperparameters. What should be the
objective function here? We can use a separate dataset Dy, N'D = (), called a
validation set, to measure how good each hyperparamer set is:

Tune(Dyay, D;€') = arg m}%n E. |R(Learn(D; A, €); Dyat) | - (2.140)

This hyperparameter tuning process is a function of both the training and val-
idation sets as well as some source of noise ¢’.
We can then obtain the final model by

6 = Learn(D; Tune(Dyay, D; €'), €), (2.141)
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or
0 = Learn(D U Dyyy; Tune(Dyay, D; €), €). (2.142)

We can furthermore obtain several such models by repeated sampling €.'2 We
will learn about what we can do with such a case of having multiple models
and what it means to have them later when we talk about Bayesian machine
learning (if time permits) in §6.2.

The question is then how to implement and execute hyperparameter opti-
mization in Eq. (2.140). One could be tempted to use gradient-based optimiza-
tion here as well, which is perfectly the right first reaction. There is however a
major issue. We already saw this issue earlier and had to come up with stochas-
tic gradient descent, and this issue is the computational cost of computing the
gradient, since the gradient requires us to compute

JacyLearn(D; A, €). (2.143)

There are many different ways to approximate this quantity, such as forward-
mode automatic differentiation as well as implicit function theorem. Neverthe-
less, this quantity is ultimately a fairly expensive quantity to compute due to
many factors including the ever-increasing dataset size |D| and thereby the
ever-increasing optimization cost of learning.

It is thus more usual to treat hyperparameter optimization as a black-box
optimization problem, where we can evaluate the outcome (that is, the loss
computed on the validation set) of a particular hyperparameter combination
but cannot access anything else of this learning process.

Random search is one of the most widely used black-box optimization based
approaches to hyperparameter optimization. In random search, we start by
defining a prior distribution p(\) over the hyperparameters A. We draw K sam-
ples from this prior distribution, {A1, ..., Ak}, and in parallel evaluate them by
training a model using each of these sampled hyperparameters. We then pick the
best hyperparameter based on the validation risk, ry = ]%(Learn(D; Ak, €); Dyar).

Instead of simply picking the best one, one can update the prior over the
hyperparameters based on

{Ar1)s - Ok ri) ) (2.144)

such that the probability is concentrated in the neighbourhood of low-risk hy-
perparameter configurations. The whole process can then be repeated using this
updated distribution as the prior over the hyperparameters. This iterative ap-
proach is akin to the widely used method called the cross-entropy method [Ru-
binstein and Kroese, 2004].

12We can also repeatedly sample €’ to obtain more than one set of good hyperparameters
as well, but this process tends to be too expensive computationally to be practical, since we
need to repeatedly train many new models for the purpose of optimization.
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2.5.1 Sequential model-based optimization for hyperpa-
rameter tuning

Instead of drawing independent hyperparameter configurations, we can think
of drawing a series of correlated hyperparameter configurations. Let D,,_1 =
((M,71),y -+ s (An—1,mn—1)) be a series of hyperparameter configurations and
their associated validation risks, selected and tested so far. At time n, we need
to decide which hyperparameter to test next. This decision requires us to ask
which criteria we want the next hyperparameter configuration to satisfy. There
are many possible criteria, but one particular easy-to-understand criterion is
expected improvement.

The expected improvement literally computes how much improvement we
would see in the risk on expectation. This expectation is computed over the
posterior distribution, similarly to Eq. (2.134):

p(r|\ Dy_y) = / p(r|X, O)p(8] Dy 1), (2.145)

p(r|\, 0) is a model that predicts the output r given the hyperparameter con-
figuration A, using the parameters . See Eq. (6.64) and surrounding discussion
on how to create such a model. The expected improvement of a hyperparameter
configuration A is then defined as

EI(A) = Eqx,p,_, [max (0,71 —7)], (2.146)
where
fp_1= min 7r;. (2.147)
i=1,..n—1

This can often be approximated using samples:
M
EI(\) ~ 57 Z_lmax((),fn_l — ), (2.148)

where 7., ~ 7|\, Dp_1.
We then want to draw the next hyperparameter configuration from the fol-
lowing distribution:

Q()‘|Dn—l) X exp (ﬁEI()‘)) ’ (2'149)

where 8 > 0. When 8 = 0, we recover the random search, and when 8 — oo,
we always choose the hyperparameter configuration with the best expected im-
provement. It is however intractable often to search for the best hyperparameter
configuration each time to maximize the expected improvement, and we only
sample the next hyperparameter configuration proportionally to the expected
improvement.

When the number of hyperparameter is large, i.e. |A| > 1, it can be chal-
lenging to sample exactly from this distribution. In that case, it makes sense
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to narrow down the space by make the density concentrated locally around the
best hyperparameter so far:

Q()‘|Dn—1) X exp(ﬂEI()\) - OZD(A, )\n—l)’ (2150)

where \,_1 is the best hyperparameter configuration so far, and D is a problem-
specific distance metric. We can then readily sample from this distribution by
first drawing a random set of samples in the neighbourhood of the best hyper-
parameter configuration so far and picking one of them proportionally to the
expected improvement. This variation resembles iterative optimization, such as
stochastic gradient descent.

Overall, this approach, often called sequential model based optimization [Jones
et al., 1998], consists of repeating three steps; (1) fit an uncertainty-aware pre-
dictor of the risk given a hyperparameter configuration, (2) draw the next hyper-
parameter configuration that maximizes the expected improvement according
to the trained predictor, and (3) test the newly selected hyperparameter con-
figuration. Of course, it is easy to see that we do not have to test only one
hyperparameter configuration at a time. Instead, we can draw many samples
from the proposal distribution ¢, test all of them (by training multiple models
and evaluating them on the validation set) and update the uncertainty-aware
predictor on all accumulated pairs of hyperparameter configuration and associ-
ated validation risk. This approach has become de facto standard when training
a new deep neural network with many hyperparameters [Bergstra et al., 2011].

2.5.2 We still need to report the test set accuracy sepa-
rately

The hyperparameter optimization algorithm above can be thought of as the
implementation of Tune in

0 = Learn(D; Tune(Dya1, D; €'), €), (2.151)

Once we found the best hyperparameter configuration, we train the final model
on the training set D to obtain our final model parameter 6. How well would it
work?

Unfortunately, we cannot use the validation risk, as that was the objective
by which 0 was selected. Meanwhile, when this model is deployed in the wild,
the world will not be so kind and a set of examples thrown at this model will
not be so perfect for the model. We thus need another set, called the test set,
Diest in order to check the test accuracy. This set must be separate from both
the training and validation sets, and we can report the risk on this set as is, or
we can report more statistics, as we discussed earlier in §2.4.3.
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Chapter 3

Building blocks of neural
networks

Earlier in §2.2.2, we talked about how general transformation F(x;6) can be.
As an example back then, we considered

Ffear(@30) = o(U Tz + 0), (3.1)
where o is a point-wise nonlinearity such as a rectified linear unit:
o(a) = max(0, a). (3.2)

By stacking this block repeatedly, we can create an increasingly more nonlinear
transformation, which is the basic idea behind multi-layer perceptrons [Rumel-
hart et al., 1986]. We often call such a nonlinear transformation function that
consists of a stack of such nonlinear layers a deep neural network.

This linear layer! is not the only option, although this is widely used due to
its lack of inductive biases. That is, if we do not possess any particular knowledge
about the input z, it is safe to treat it as a flat finite-dimensional vector and
feed it through a stack of these linear layers. It is however often the case that
we know about underlying structures of an observation. For instance, if we are
dealing with a set of items as an observation, we want our transformation to be
permutation equivariant or invariant, as there is no inherent order among the
items within a set.

In this (short) chapter, we will introduce a few more of these basic building
blocks to build a deep neural network. In addition to these blocks, we can be as
creative as possible as long as your newly designed blocks are differentiable w.r.t.
both their own parameters and inputs. Some blocks may lack any parameters,
and that is perfectly fine. For instance, I can have a block that simply reverses
the order of items within an input in a deterministic manner.

L Although this block is far from being linear, we often refer to this block as a linear block
or a linear layer.
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3.1 Normalization

Let us consider the simple squared energy function from Eq. (6.64), with an
identity nonlinearlity:

1
e'([z,y], (u,c)) = §(UTSE+C*Z/)2~ (3.3)
We will further assume that y is a scalar and thereby w is a vector rather than
a matrix.
The overall loss is then

N N
1 1
J(0) = > € ([2nynl, (u,0) = N > (W +c—yn) (3.4)
n=1 n=1
The gradient of the loss w.r.t. u is then
1
V= N (u'xp +c—yn)x,) (3.5)
n=1
1N
_ T
V.= N;(u Tn + € — Yn)- (3.6)

So far, there is nothing different from our earlier exercises. We now consider
the Hessian of the loss:

1 N 1 N
H=|N Znﬁl xnm;lr N Zn:l Tn ) (3'7)
% Zn:l Ln 1

The Hessian matrix tells us about the curvature of the objective function and
directly relates to the difficulty of optimization by a gradient-based approach. In
particular, gradient-based optimization is more challenging when the condition
number is larger, where the condition number is defined as

= > .
5= i ()] 2 (3:8)

where \;(H) is the i-th eigenvalue of H.

It is out of scope of this course to discuss in depth why the condition number
matters for optimization. At a high level, you can think of the eigenvalues of the
Hessian of the objective function as quantifying how stretched out this function
is along the associated eigenvector directions. That is, if the eigenvalue of an
eigenvector is large, it means that the function value changes more dramatically
along this eigenvector direction. When the objective value changes very differ-
ently across all these directions (orthogonal directions, as they are eigenvector
directions of a symmetric matrix), stochastic gradient descent suffers, as it will
easily oscillate along the directions with steep changes while it will not make
much progress along the directions with only little changes. We thus want the
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eigenvalues of the Hessian to be similar to each other, for such an iterative op-
timization algorithm to work well. For more rigorous discussion, refer to your
favourite convex optimization book [Nocedal and Wright, 2006].

Based on this definition, an identity matrix has the minimal condition num-
ber. In other words, we can transform the Hessian matrix into the identity
matrix, in order to facilitiate gradient-based optimization [LeCun et al., 1998].
In this particular case, because the Hessian matrix does not depend on 6 but
only on the observations x,’s, we can simply transform the input in advance by

N
1
(1) zp + Ty — N Z " (centering) (3.9)

n’'=1

Nl=

N -
1
(2) z, + (N Z mn/x;> T (whitening) (3.10)

n’'=1

This will result in the identity Hessian matrix, improving the convergence of
gradient-based optimization.

Such normalization is a key to the success in optimization, but it is challeng-
ing to apply it in practice exactly, as the Hessian matrix is often non-stationary
when we train a deep neural network. The Hessian matrix changes as we update
the model parameters, and there is no tractable way to turn the Hessian matrix
into the identity matrix. Furthermore, it is even more challenging to invert this
Hessian matrix. It however turned out that normalizing (as a weaker version
of whitening) of the input to each block helps in learning. Such normalization
could also be considered as a building block, and let us look at a few widely
used ones here.

Batch normalization [Ioffe and Szegedy, 2015]. This is one of the build-
ing blocks that sparked the revolution in deep learning, greatly facilitating learn-
ing:

Frateh—norm (2;0 = (m,s)) =m +exp(s) - ((z — p) @ 0), (3.11)

where u and o? are the mean and diagonal covariance of the input to this
block. Because the inverse of a full covariance matrix, which is often similar to
the Hessian matrix up to an additive term, is costly, we are only consider the
diagonal of the covariance matrix, which is readily invertible.

Instead of using the full training set to estimate p and o2 , which will be
prohibitively expensive, we use the minibatch at each update during training to
get stochastic estimates of these two quantities. This practice is perfectly fine
during training but it becomes problematic when the model is deployed, as the
model will receive one example at a time. With a single example, we cannot
estimate either u nor o2, or if we do, it will simply subtract out the input in its
entirety. It is a usual practice instead to either fully re-estimate p and o2 using
the full training set once training is over or keep the running estimates of u and
o? during training and use them after training is over.
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Layer normalization [Ba et al., 2016]. Instead of normalizing values across
examples, it is possible to normalize values within each example across dimen-
sions. When we do so, we call it layer normalization:

1
F‘layerfnorm(x; 0= (mv S)) =m+ exp(S) T — ﬂ E Zi |, (312)
‘ El x| =
1 =1
_ )2 S——
|
=1

=0

where we assume z is a finite-dimensional vector. We can certainly modify it to
cope better with other types of the input, but that is out of the scope of this
course. It is rather unclear why this should help with optimization, but it has
been found to greatly facilitate learning in many large-scale experiments.

Unlike batch normalization, one must be careful when using layer normal-
ization, as it can easily break the relationships among different examples. For
instance, imagine a simple binary classification problem, where the positive class
consists of all input vectors whose Euclidean norms are less than 1 and the neg-
ative class of all input vectors whose Euclidean norms are greater than or equal
to 1. Let 4 =[0.9,0] and x_ = [2, 0]. After layer normalization, they are trans-
formed into £ = [0.5,—0.5] and &_ = [0.5, —0.5], respectively. Suddenly, these
two inputs, which belong to two separate classes, are not distinguishable from
each other. This happens, unlike with batch normalization, because normal-
ization is applied differently to different instances, while batch normalization
applies the same normalization to all instances simultaneously.

3.2 Convolutional blocks

Many problems in machine learning boil down to detecting patterns within an
input that repeatedly appear within the training data set. Consider for instance
an object detection algorithm. Initially we do not know what kind of patterns are
considered representative of each object. Learning thus must figure out which
patterns repeatedly appear whenever the input was associated with a particular
object label. These patterns are however not global but localized, since the
object may appear anywhere within an input image. It may appear at the center
but also appear at any corner of the image, without any impact on the object
identity. In other words, an object detector should be translation invariant.?

2We say F is equivariant to a particular transformation 7 when
F(T(X))=T((F(X)). (3.13)
We say F' is invairant to a particular transformation 7 when

F(T(X)) = F(X). (3.14)
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Any invariance could be implemented as a stack of equivariant blocks fol-
lowed by a reduction operator, such as summation. We thus need to implement a
translation equivariant block. In this section, we consider a so-called convolution
block, or more precisely correlation block.
We start by considering an infinitely long discretized time series, ¢ = [..., xt—1, Tt, Tet1, - - |
with |z| — oo, as an input to this block. Each item x; is a finite-dimensional
real vector. The parameter of this block is a set of finite-length filter sequences,
e =1fF fk, .. '7f2kM+1] with M < oo and k =1,..., K. Similarly to z;, each

fF is also a finite-dimensional real vector with |fF| = |z;|. The convolution
block then returns an infinitely-long time series, h = [..., hi—1, he, heg1, .. ],
where |h| = K.
Let h¥ be the k-th element of h;. We then compute it as
m'=M
k T sk
hi = Z Lt fnr g (3.15)
m/'=—M

In other words, we apply the k-th filter f* at each position ¢ to check how similar
(in the sense of dot product) the signal centered at ¢ is to the filter f*.
Another way to write it down is

m' =M
hy = Z Frvy Mi1Te4mss (3.16)
m'=—M
where
fo
2
Fn,=|"| eRr™K (3.17)
U

with d = |z¢|. The full parameters of this 1-D convolution block can be summa-
rized as a 3-D tensor of size d x K x (2M + 1).

It is pretty straightforward to see that this operation is translation equivari-
ant. If we shift every x; by §, the resulting h; will shift by ¢ without any impact
on its computed value. Unfortunately, in practice, this does not hold perfectly,
as we do not work with an infinitely long sequence. We must decide how to
handle the boundaries of the sequence with a finite-length sequence, and this
choice will impact the degree of translation equivariance near the boundaries.
Detailed discussion on how we handle boundaries is out of the scope of this
course, though.

We can now readily extend this 1-D convolution to N-D convolution. For
instance, 2-D convolution would work on an infinitely large image, and 3-D
convolution on an infinitely large-and-long video. Furthermore, we can extend
it by introducing various features, such as a stride. These are also out of the
scope of this course, but I recommend the first half of the classic by LeCun et al.
[1998].
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3.3 Recurrent blocks

Often, strong equivariance or invariance tends to be too strict. Perhaps we
want equivariance only in a particular context and not in another context. It
is however difficult to implement it in a strict sense. We can take one step up
in the level of abstraction and work on applying the same operator repeatedly
over the input. This is the core idea behind a recurrent block.

A recurrent block works on a sequence of input items (x1,xa,...,x7), just
like the 1-D convolution block above. This block consists of a neural network
that is applied repeated to x; sequentially (that is, one at a time.) This neural
net takes as input the concatenation of x; and the memory (or hidden state)
h;_1 and returns an updated memory h;:

he = F([2e, he_1]; 0,), (3.18)

where 0, is the parameters of this recurrent function F'. #, includes the intial
hidden state hg. Once we sweep the input sequence with F', the recurrent block
returns the same-length sequence by concatenating all h;’s: (hi, ha, ..., hr).

The advantage of such a recurrent block over e.g. the 1-D convolution above
is that it effectively has an unlimited context size. In the 1-D convolution, any
output at time ¢ depends only on 2M + 1 input vectors centered at t. On the
other hand, the recurrent block takes into account all inputs up to ¢ to compute
the hidden state h; at time t. Furthermore, by simply stacking two recurrent
blocks with the sequence reversal inbetween, we can make each output vector
to depend on the entire sequence readily.

A representative (and simple) example of widely-used (and easy-to-use) re-
current blocks is a gated recurrent unit [GRU; Cho et al., 2014] which is defined
as

Foru = u @ hy—y + (1= ug) @ hy, (3.19)

where
ry =0 (Wexy + Uphi—q + by) (Reset Gate) (3.20)
u =0 (Wyxy + Uyhi—1 + by) (Update Gate) (3.21)

hy = tanh (Wyae + Up (e © hy_1) + by) (Candidate State) (3.22)

This (weighted) linear combination has shown to effectively address the issue of
vanishing gradient [Bengio et al., 1994], and has become a standard practice in
machine learning over the past decade or so [He et al., 2016].

3.4 Permutation equivariance: attention

We are often faced with a situation where the input to a block is a set of vectors
X = {xl}fil We want to transform each item zj, in the context of all the other

items in this set, resulting in another set of vector H = {h,}f\[:1 We want this
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layer to be equivariant to permutation such that F((zy:))L;) = (ho@))iy,
where o : {1,...,N} — {1,...,N} is a permutation operator. Let’s consider
one canonical way to build such a permutation equivariant block.

This block begins with three linear blocks:

ki = F‘lincar(xi; 9]6), (323)
qi = Einear(xi§ oq)a (324)
V; = Flinear(xi; H’U) (325>

We are referred to as the key, query and value vectors of the i-th item z;.
For each j-th item x;, we check how compatible it is to the current i-th item
X
T
; exp(q, k;
of = — P4 JT) . (3.26)
Zj’:l exp(q; kjr)

We normalize it to sum to one using softmax.
Now, we use these importance weights to compute the weighted average of
the values:

N

b=y olv. (3.27)

j=1

It is a usual practice to repeat this process K times to produce

When we do this, each of K such processes is called an attention head.

At this point, 9; is a linear function of the input X = {z1,...,zn}. We
want to introduces some nonlinearity here by introducing the final linear layer
together with a residual connection:

hi = Flayer—norm (E&ear(ﬁi; 9h); 91) + Flincar (xi; 97")’ (329)

where the lack of the superscript in the second term means that there is no
nonlinearity. If |h;| = |z;]|, it is customary to fix 6, = (1,0). It is usual to add a
layer normalization block after 0; or at h;, to facilitate optimization.

When implemented in a single block, this block is often referred to as the
(multi-headed) attention block [Bahdanau et al., 2015, Vaswani et al., 2017].

Positional Encoding. Another way to think of the attention block above is
to view it as a way to handle a variable-sized input. Regardless of the size of
the input set, this attention block can work with the input. It is thus tempting
to use the attention block for a variable-length sequence, which was the orig-
inal motivation behind the attention block. There is one hurdle that must be
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overcome in that case. That is, we must ensure that each item in a sequence is
marked with its position.

There are two major approaches to this. The first approach is based on
additive marking. For each position 7, let e; be a vector of size |z| and represent
the i-th position. There are many ways to construct this vector, and sometimes
it is even possible to learn this vector from data, although we can only handle
the length seen during training in the latter case. One particular approach is to
use sinusoidal functions so that each dimension of e; captures different rates at
which the position changes. For instance,

COS (m), if7 mod2=1

where L is a hyperparameter and is often set to 10000. This vector is then added
to each input item, i.e., x; + e; before being fed to the attention block.

The first approach, the additive approach, makes it easy for the attention
block to capture the locality of each vector, because neary vectors tend to have
similar positional embeddings, and to capture the absolute position based pat-
tern, as each absolute position is represented by its unique positional embedding
vector. It is however challenging for the attention block to capture the patterns
based on relative positions beyond simple locality.

In particular, consider how the so-called attention weight on the j-th item
for the i-th item was computed in Eq. (3.26). The weight is proportional to the
dot product between the i-th query vector and the j-th key vector:

6 kj = (Wo(zi +e) T (Wi(zj +¢;)) (3.31)
=] W, Wia; + e W Wi, + 2] W, Wier + ¢] W, Wier,  (3.32)

where we assumed zero bias vectors for both query and key vectors. From from
the first term in the expanded expression, we notice that the content-based
relationship between the i-th input and j-th input is largely independent of
their positions. In other words, the semantic relationship between these two
inputs is stationary across their relative positions, which may be restrictive in
many downstream applications.

Focusing on the first term above, we can think of a way to ensuring that
this pairwise semantic relationship is position-dependent. More specifically, we
want it to depend on the relative position between z; and x;:

(4 kj);_; = a; R Rjaj, (3.33)

where R,, is an orthogonal matrix that is parameterized by a scalar position m
and changes smoothly w.r.t. m. One way to construct such an orthogonal matrix
is to build a block diagonal matrix where a 2-D rotation matrix is repeated along
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the diagonal:

R3(m) 0 . 0
0 R(m) - 0
R, = 0 0 o 0 , (3.34)
0 0 Rfm‘/Q(m)

where RZ(m) is a 2-dimensional rotation matrix that rotates a 2-dimensional
real vector and defined as

cos(mLF/1*1)  —sin(mLF/1=l)

2 _
Bilm) = | n(mI ) cos(mL/#))

. (3.35)

In other words, we rotate every pair of elements of the query /key vector based on
its position before computing the dot product between these two vectors. Since
this rotation depends on the relative position between the query and key vectors,
this approach can capture position-dependent semantic relationship between
the i-th input and the j-th input. This idea has become one of the standard
approaches to incorporating positional information in the attention block in
recent years [Su et al., 2021].
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Chapter 4

Probabilistic Machine
Learning and Unsupervised
Learning

4.1 Probabilistic interpretation of the energy func-
tion

Although we already learned about how to turn an energy function into a prob-
ability function in §2.1.2, we will go slightly deeper in this section, as it will help
us derive a series of machine learning algorithms in this chapter.

The energy function is defined w.r.t. the observation z, the unobserved (la-
tent) variable z and the model parameters 6: e(x, z, ). For now, we will assume
that 6 is not a random variable, unlike x and z. We can then compute the joint
distribution over x and z as

o exp(—e(z, z,0))
p(z,2,0) = [f exp(—e(a’,2’,0))dz'dz""

(4.1)

Of course, it is often (if not almost always) challenging to compute the normal-
ization constant (or the partition function) in the denominator. Such a challenge
hints at a different approach to the same problem. Instead of defining an en-
ergy function first and then deriving the probability function, why not directly
define the probability function? After all, we can recover the underlying energy
function given a probability function up to a constant:

e(z,z,0) = —logp(z, z;0) + log Z(0). (4.2)
In fact, it may be even easier to decompose the joint probability function p(z, 2)

49
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further,! using the chain rule of probability:

p(z, 2) = p(2)p(x]2). (4.3)

Such a decomposition gives us an interesting way to interpret this proba-
bilistic model. z is a latent variable that determines the intrinsic properties of
the observation . We therefore first draw an intrinsic property configuration z
from the prior distribution p(z). Given this intrinsic property configuration z,
we draw the actual observation x.

For instance, you can imagine that z refers to an object category (a dog, a cat,
a car, etc.) We first draw a category of an object we want to paint by selecting
z according to the prior distribution p(z). This prior distribution reflects the
frequencies of these object categories in the world. Given the object category
z, we can now paint the object by drawing x from p(z|z). This conditional
distribution encapsulates all variations of the object z in its visual form, such
as lightning condition, background, texture, etc.

Another distribution, or the probability function, of our interest is the pos-
terior distribution over z given the observation z. Continuing from the example
above, we can think of trying to infer which object z a given painting = de-
picts. Such inference is often imperfect and results in a distribution over the
object categories rather than picking one correct category. We can derive this
distribution using the Bayes’ rule:

 plp(z)  pla]z)p(z)
P = e dE  pa)

Just like earlier when we tried to turn the energy function into a probability
function, posterior inference is often computationally intractable due to the
normalization constant in the denominator: [ p(z|z")p(z")dz".

With these probability functions in our hands, we can now define a generic
loss function:

(4.4)

Ly(z,0) = —log/p(x|z;0)p(z;9)dz. (4.5)

We often refer to this loss function as the negative log-likelihood or log-probability.
If you are not comfortable with having a single-variable observation x, we
can write this down in terms of the input-outcome pair (z,y):

MMaMﬂ>:—mg/mm%aem@m@me (4.6)

= —10g/p(y|x,z;9)p(z;0)dz + const., (4.7

where we assume that p(x) is simply given and is not optimized with its own
parameters. When z does not exist, it reduces to the cross-entropy loss from
Eq. (2.30):

Ly([z,y],0) = —logp(y|z; 0). (4.8)

L As usual, we will omit @ if its existence, or lack thereof, is clear from the context.
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In the rest of this chapter, we focus on the case where we have input-only
observations. We often call such a setup unsupervised learning.

4.2 Variational inference and Gaussian mixture
models

We will derive something magical in this section, although it will not look mag-
ical at all in hindsight by the end of this section. To do so, let us first re-state
that it is challenging to derive the posterior distribution p(z|z) over the latent
variable given an observation, unless we explicitly put severe constraints on the
forms of p(z|z) and p(z).? Instead of computing p(z|z) directly, we can perhaps
find a proxy q(z; ¢(z)) to this exact posterior distribution, called an approximate
posterior. This approximate posterior probability function is parametrized by
¢(z), where we use (x) to denote that these parameters are specific to z. When
it is not confusing, we would drop (z) here and there for both brevity and clarity.

We are now faced with a task to make the proxy q(z; ¢(z)) a good approxi-
mation to the true posterior p(z|z). We will do so by minimizing the Kullback-
Leibler (KL) divergence which is defined as

Dra(all) =~ [ ates ot o 2= (49)
= —E.q[logp(z|z)] = H(q) = 0 (4.10)

where H(q) is the entropy of ¢ defined as
H@) = [ 4l oga(:)ds. (4.11)

It is important to notice the inequality above, that is, the KL divergence is by
definition non-negative.
Let us continue from the KL divergence:

Dra(all) =~ [ atesota) o 2E s (112)

palap)
=~ [ ates o)) 1og LIS (113
)

~t0gp(e) — [ ates o)) ogplalaz — [ gt o)) 10g — L

= logp(z) — E.nyq [log p(z]2)] + Dxr(q(2; ¢(2))|lp(2))-

2In short, p(z) should be a so-called conjugate prior to the likelihood p(z|z), so that the
posterior p(z|z) follows the same distributional family as p(z|z).
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To find ¢ (or its parameters ¢(z)), we minimize the second and third terms
above, since the first term log p(x) is not a function of ¢ . In other words,

P(z) = arg f;}if} —E.~q [logp(z|2)] + Dxr(q(2; ¢(x))[[p(2)) (4.16)
= arg g1(3>)<Ez~q log p(z]2)] — Dxw(q(z; ¢())[Ip(2)) - (4.17)
=J(#(2))

If we design ¢(z; ¢(x)), it is often possible to compute the (stochastic) gradient
of this objective function J w.r.t. ¢(x) and use stochastic gradient descent to
update ¢(x) iteratively to find ¢ that is a better proxy to the true distribution
than at the beginning.

In an interesting twist, this objective function J is a lower bound to log p(z),
because the KL divergence is greater than or equal to 0:

log p(x;0) > E.q [log p(z|2;0)] — Dki(q(z; é(x))||p(2)) - (4.18)
—J(6)

This means that we can indirectly maximize the log-probability assigned to
an observation x by the model by maximizing its lowerbound. Maximizing the
lowerbound does not guarantee that the actual quantity increases, but it ensures
that the actual quantity is higher than the achieved maximum lowerbound. The
quality of doing so is determined by the gap between the lowerbound and the
actual quantity, and this gap turned out to be exactly the KL divergence between
the approximate posterior and the true posterior, Dx1,(q||p). In other words, if
our approximation to the posterior is good, we get a tighter lowerbound and
consequently can maximize the true target quantity better.

Since the same objective function J is used for both minimizing the KL
divergence in order to find a better approximate posterior (4.16) and maximizing
the lowerbound to the true quantity (4.18), we can perform both optimization
simultaneously [Neal and Hinton, 1998]:

N
1
a. NT Ezfv z;p(x 10 50 -D ; )
P N; a6 108 P(xn 2 0)] = Diw (2 d(xn)|p(2))

(4.19)

where 1, ...,z are the training examples. This formulation furthermore allows
us to use stochastic gradient descent from §2.3.2. This procedure is often referred
to as stochastic variational inference and learning. Inference refers to estimating
¢(xy,), and learning refers to estimating 6.

4.2.1 Variational Gaussian mixture models

Let us consider a practical use case of stochastic variational inference and learn-
ing above. We start by defining a mixture of Gaussians. A generative story
behind a mixture of Gaussians (or equivalently a Gaussian mixture model) is
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that there exist a finite number of Gaussian distributions, which are referred to
as “components”, and a latent variable z selects one of these components. Once
the component is selected, an observation x is drawn from the corresponding
Gaussian distribution.

To map this story onto the probability functions, we begin with a prior
distribution over the components:

p(z) = 57 (4.20)

where M is the number of Gaussian components. This prior states that each
and every component is equally likely to be selected. This can be relaxed, but
we will stick to this for now. z can take any one of {1,...,M}.

Once the component is selected, we draw an observation x from

p(z]z) = N(z|p=, X2), (4.21)

where p, and Y, are the mean and covariance of the z-th Gaussian component.
For simplicity, let us assume that ¥, = I, that is, the covariance is an identity
matrix. In such a case, we say that the component is spherical Gaussian.

We introduce an approximate posterior for each training example x,,. This
approximate posterior is

q(Z = k; ¢n) = a;cl? (422)

where o > 0 and Z,iw:locz =1lforalln=1,...,N.
We can now write down the objective J:

J(at. o p fin) :ii ia” e = 2 = S10g2n
PR [N =2 EICIIR N m 2 m 9
n=1 \m=1

(4.23)

M M
+ Z oy log M — Z ap logar, |,

m=1 m=1

(4.24)

where d = dim(z").
Let’s compute the gradient of J w.r.t. pg:

1 n n 1 n,..n n
Ve = ﬁZ(O‘k(z - pk)) = N <Zak$ szak> =0 (4.25)
N n

O n
n=1 Zn’:l aﬁ

We can compute the exact solution to uy analytically, that maximizes J.
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Let’s do the same for aj:

1 d
Var = —§\|x” — pel|? = 5 log2m —log M —logap —1=0 (4.27)

< loga; = —%Hx" — u|® — glogZW —logM —1 (4.28)
exp (—%Hx” 0 glogZﬂ' — logM)
SE oxp (bl — ]2 — log2r —log M)’
exp (—gll2" — pu|?)
o exp (=3 llen = el l?)

= ap (4.29)

— af 4.30
i (

because Zszl ap = 1.
For the approximate posterior, we can solve it analytically and exactly. In

fact, if we analyze the solution above more carefully, we realize that it is identical
to the true posterior:

1

log o} =logN(z"|uk,I)+log — —logZ. (4.31)
~— —_——— M
p(z=k|z™) =p(zn|z=k;0) —p(2=k)

where Z is the normalization constant. In other words, the KL divergence be-
tween ¢(z; ¢(x)) and p(z|x) is zero. It also implies that there is no gap between
the variational lowerbound and the true log-evidence log p(x).

Gaussian mixture models are special in that the variational lowerbound is
tight, i.e., there is no gap. They are also special in that we can find the analytical
solution to posterior inference and likelihood maximization in a relatively simple
manner. Even in this case, one should notice that the solutions to setting these
gradients to zero are co-dependent. We thus need to iteratively update these
quantities multiple times until some kind of convergence is achieved. This pro-
cess is called expectation-maximization (E-M), or more generally a coordinate-
ascent algorithm. Each of these two steps (updating the posterior and updating
the parameters) is guaranteed to improve the variational lowerbound, and this
alternating procedure will ultimately find a local maximum.

Although there is an analytical solution to the parameters at each E-M iter-
ation, it may not be desirable to use this analytical solution, because it requires
us to use the posterior means of all N training examples. When N is large, this
step, which needs to be repeated, can be prohibitively expensive. We can in-
stead use stochastic gradient descent by computing the posterior means of only
a small subset of training set (which can be done exactly as we have derived ear-
lier) and only slightly updating the parameters following the stochastic gradient
computed using this minibatch alone. Each E-M iteration is not guaranteed to
improve the overall variational lowerbound, but on average with small enough
step sizes, stochastic gradient descent makes progress. This would be a good
approach to implement the Gaussian mixture model on a very large dataset.

Once learning is over, we can use the fitted Gaussian mixture model to (a)



4.2. VARIATIONAL INFERENCE AND GAUSSIAN MIXTURE MODELS55

draw more samples and (b) infer the posterior distribution over the components
given a new observation.

4.2.2 K-means clustering

Let us introduce a temperature 8 > 0 as a hyperparameter in Eq. (4.30):

exp (= F5lle" = pl1?)
ay = (4.32)

_ .
Siovexp (= Fllan - e ?)

When the temperature is high, i.e. 5 — oo, the posterior distribution is
closer to the uniform distribution. This is understandable if you think of sta-
tistical thermodynamics. When the temperature is high, there is no particular
configuration that is more likely than others, since all molecules are bouncing
around non-stop with high energy. On the other hand, when the temperature
approaches 0, the posterior converges toward one of the corners of the (K — 1)-
dimensional simplex, meaning that only one of the components is probable and
all the others are not at all. This would be an extreme case that interests us
here.

When 5 — 0, we can rewrite the solution to posterior inference as

1 if n __ 2 _ N _ n __ L 112
B T e
0, otherwise.
In this case, we can be more economical by storing
2t = 4 4.34
2 =arg max _ap, (4.34)

e

instead of K values for each n-th training example. In other words, we need
only [log, K| bits as opposed to K x B bits where B is the number of bits for
representing a real value in one’s system.

In this case, the update rule for the mean of each component in Eq. (4.26)
can be simplified as well:

N
«
= —x—a" (4.35)

N
=> 1(&" = k)" (4.36)

That is, we collect all training examples that belong to the k-th component and
compute the average of these training examples. This further saves a significant
amount of compute, as we only go through on average N/K training examples
for each component to compute its mean vector.

Because we are effectively making the hard choice of to which component
each training example belongs to (4.34), we often refer to this special case as
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hard expectation-maximization (EM). Furthermore, because we are effectively
grouping the training examples into K clusters, and each cluster is represented
by its mean, this algorithm is called K-means clustering as well. This is one
of the most widely used algorithms in unsupervised learning and data analysis,
and the variational inference based approach we started with allows us to more
flexibly extend this algorithm to work with more non-trivial distributions.

4.3 Continuous latent variable models

Let’s restate the objective function derived from the variational inference prin-
ciple earlier in Eq. (4.19):

2

¢(11)7 ,¢(xN) o N

(4.37)

Looking at this formula, there is absolutely no reason for us to assume that z is
a discrete variable, as we did with the mixture of Gaussians above. z can very
well be a continuous real-valued vector.

Let us try a simple case here by assuming that

p(2) = N(2;0,021) (4.38)
p(x|2;0) = N(2; Wz + b, 1171, (4.39)

where 8 = (W, b) with W € RI*I*I2l and b € RI*I. 62 is a hyperparameter and
controls the strength of regularization. We will discuss more what we mean by
this. We further use a simple approximate posterior for each example z":

(25 ¢(2n)) = N (2; i, I17), (4.40)

where ¢(z,) = (tn).
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Then, the objective for each training example " becomes

1 1 K 2
Jn=Eog, |—=llzn — W2z —0|? - Mlog27r — — % Kt el K +2Kn(o)
" 2 2 2 o2
(4.41)
— . | lleall + SIWz + 6P =T W2+ 8)] = 55 (142)
2 2 " 202
1 1 1
= —F. |2 WIWz+ b2 +b"Wz—2 Wz —2b| — —||ptn]|* + const.
2 2 202
(4.43)
1 1 1 1
= —§tr WE.[(2 — pin)(z — pin) "W T — §tr WuE.[2]TWT — §tr WE, [2]u, WT + §tr Wttt W1
(4.44)
1 1
- §||b||2 — 0" Wy + ) W + 20— 2—2||,un||2 + const. (4.45)
o

1 1 1 1
= =g WWT = Sy W Wy = S [b* = bT W, 2 Wt + 2,5 = 55 |n|* + const.
o
(4.46)

where const. refers to the terms that do not depend on either ¢(z,,) nor 6.
Let’s perform posterior inference first by computing the gradient of J =

3 In Wt (ay):

1

Viw =W Whp + W (2y —b) = —ptn =0 (4.47)
ag

~(W'W 402D py + W (2, —b) =0 (4.48)

= (WTW 4+ 07 21)'W T (2, — b). (4.49)

Just like with the MoG above, we get a clean, analytical solution to each .
Because we need to compute the inverse of WTW + I € RE*X  this may be
somewhat expensive, but we need to compute it once and use it for all N pu,’s.

Let’s look at the role of o2 from the prior p(z) earlier in this context. When
02 — 00, the expression above simplifies to

Hn = (WTW)ile(xn —b), (4.50)
—_—
=(a)

where (a) is the pseudoinverse of W. When W is a square and invertible matrix,
this corresponds to W~!. In that case, we can think of u, as the solution to

Hn = Wﬁl(zn - b)7 (451)
which is equivalent to

Ty = Wy +b. (4.52)
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This expression is the mean of the p(z|z; ) from above.

If there is no prior information available for z, i.e. 02 — oo, our best guess
at which latent configuration led to z, (that is, posterior inference) is to mul-
tiply x, (after subtracting the bias b) with the inverse of the forward matrix
W. In other words, the prior knowledge we have (in this case, that the latent
configurations are more probably if they are closer to the origin) would affect
posterior inference. This is what we meant earlier by regularization and that o2
controls the strength of regularization.

We now compute the gradient of J w.r.t. W and b given u,’s. Let’s begin
with b:

N
1
= — E —b— = 4.
Vb N < ( b Wﬂn + an) 0 ( 53)
1 N
= b= i 321 (Wi, — ) - (4.54)

This expression makes an intuitive sense. b, the bias, is the average offset between
what we get given the latent configuration and what we actually observe.
Let us continue with W:

N
1 T T T
Vw = N ngil (=W — Wpnp, — by + Tnfiy, ) (4.55)
| X | X
_ - T - o T
=W <I+ n2=1 /hu%) tN nE:l(xn b) it - (4.56)

Then,

1 Y . AR o
W= 5 2_(@n—bu, I+N;unun : (4.57)

n=1

The first term in the product in the right-hand side can be thought of im-
plementing so-called a Hebbian learning rule: “neurons that fire together, wire
together” [Hebb, 1949]. If the i-th dimension of the observation x; fires (that
is, beyond the bias b;) and the j-th dimension of the latent variable s; fires
together (where ‘fire’ is defined as any deviate away from the bias or zero),
the strength of the weight value w;; between them must be large. This already
shows up as the second term in the gradient w.r.t. W above.

The second term in the right-hand side (which corresponds to the first term
in the gradient) is more complicated. This works as whitening y,, inside the first
term. That is, it makes pu,,’s to be distributed so that the covariance is closer
to the identity. This works as making W capture the covariance between the
mean-subtracted observations (x,, — b)’s and the whitened latent configurations

-1
(un (I + % 22[:1 Mnﬂ;) )’s. By doing so, in the next iteration of this EM
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procedure, p,,’s will be distributed such that their collectively covariance will be
closer to the identity, which is what we imposed by saying that the prior over
the latent variable should be a spherical Gaussian distribution. In other words,
this is also the effect of regularization due to the prior distribution.

By cycling through these steps of updating u,’s, W and b, the variational
lowerbound will improve gradually until convergence. In the limit of 02 — oo
and with the constraints that W is orthogonal, i.e., WWT = I and that
b= % 25:1 Zn, We recover principal component analysis [Hotelling, 1933]. Our
derivation here is a special case of a more general version called probabilis-
tic principal component analysis [Tipping and Bishop, 1999]. In particular, we
follow the variational inference approach [Ilin and Raiko, 2010].

This variational lowerbound based approach again enables us to use stochas-
tic gradient descent which is much more scalable than the exact EM procedure.
At each iteration, we pick a minibatch of training examples, infer the (approxi-
mate) posterior means and use them to compute the gradient of the variational
lowerbound w.r.t. W and b . Instead of computing the optimal values given this
minibatch, we simply update them slightly following the stochastic gradient
direction.

4.3.1 Variational autoencoders

A natural question, based on what we have already seen in §2.2.2, is whether
we can use a nonlinear transformation for p(z|z) instead of the linear one in
Eq. (4.38). This is totally possible with

p(z|z;0) :./\/’(3L‘|F(z;9),[“"’4)7 (4.58)

where F' is an arbitrary nonlinear function, parametrized by 6, that maps z to
z and is differentiable w.r.t. . In other words, we are okay with any kind of
parametrization as long as we can compute3

JacgF'(z;0) = 2—5(2;9). (4.59)

This small change has a big consequence in terms of the modeling power of
the continuous latent variable model. This is due to the peculiar (and amazing)
properties of normal distributions. Let us revisit the linear case above (4.38):

p(2) = N(2;0,5217) (4.60)
p(x)2;0) = N(z; Wz + b, 1171, (4.61)
31 will use -Z notation to refer to the Jacobian matrix unless it is confusing.

ox
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Then, the joint probability can be written down as

1

1
_ﬁ”Z”2 - §||JL‘ — Wz — b||? + const.

(4.62)

log p(z, z;0) = logp(z) + log p(x|z;0) =

= —% (zT(c Nz +(x=b) " I(x—b)+ 2" W Wz —(x—b) Wz —2W'(z —b)) + const.
(4.63)

1
=3 ((z — DIz —b)+2" W W0 2Dz—(x—b)"Wz— ZTWTz) + const.
(4.64)

Let v = [z,2] and p = [b,0/*]T. Then,

1 1 W
logp(x,z;e) —IOgZ(G) = _5 (U_/J’)T _WT WTW+O.—2I ('U_/JJ) + const.

- (4.65)

This shows that the joint distribution over [z, z] is also Gaussian with the mean
w. Although we just needed to show this for our further argument, let us also
check the covariance matrix of the joint distribution.

There is a magical formula called the block matrix inversion lemma:

C D —(D—CA'B)"1CA™! (D—-CA-'B)"!
(4.66)

{A B] o [A—l + A B(D—CA'B) ' CATT —AT'B(D - CA‘lBVl}

We can use this to write down the covariance of the joint distribution p(z, z; 0):

. _ {I +WWIW o2l —-WTW)TWT WWTW +0721 — WTW)l]

WIW 402l =WTW)" W (WTW 402 — W)~
(4.67)
I+2WWT 2w
= |: 2wT o2 |- (468)

Because the marginal distribution over any subset of dimensions of a normal
random variable is also normal, we know that the marginal distribution over x,
Le., p(z) = [ p(z|z)p(z)dz, is also normal. In other words, the linear relationship
between x and z in the probabilistic principal component analysis (PCA) above
can only represent a Gaussian distribution over x. This is a critical limitation.

Such a limitation does not hold anymore if we use a nonlinear function
to model the relationship between z and z. In that case, the joint distribution
p(z, z) would not be in general Gaussian, because the covariance structure would
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not be stationary but change dynamically depending on x and z. We would
rather get a mixture of Gaussians with an infinitely many components:

plz) = / p(z)p(z)dz = / p(2IN (2] F (2 6), T)d-. (4.69)

Let’s consider the variational lowerbound with this nonlinear formulation for
one particular example x,,:

_ 1 NI || 1K+ ”;“n”2
In =E.ng, { 2||xn F(z0)| 3 log 277} 5 [ 2 K +2K1n(o)
(4.70)
The gradient of J,, w.r.t. u, is then
e (=gllz—pal?) 1 N
Vi == [ B e e — PO - 53 (4.71)
1 HUn

(22,E, [2F(2;0)] — 2z, 10K, [F(20)] + E. [2]|F(2;0)?] — maE. [ F(2;0)[%]) — %.
(4.73)

N =

It is clear that without knowing the form of F, it is not possible to come up with
an analytical solution to u, in general. Even worse, it is unclear how to compute
the gradient analytically either, due to the challenging expectations that must
be computed. We can however use sampled-based Monte Carlo approximation,
since we can choose the approximate posterior ¢ to be readily samplable:

= 1 = = Hn
Vi, =V, =—§(z—un)||xn—F(z;9)H2— —. (4.74)

In this particular case of Gaussian posterior, we can draw a sample using a
reparametrization trick:*

Z = Un + O¢, (4.76)
where € ~ N(0,1);)). Plugging this in, we get

o
= ——€

. lim
Vi, 5 |zn — F(pn + o€ 0)]|? — ol (4.77)

4A reparametrization trick refers to formulating the process of sampling from a particu-
lar distribution as nonlinearly and deterministically transforming noise drawn from another
distribution:

z=g(& ), e~ p(e). (4.75)
This allows us to compute the derivative of the sample z w.r.t. the parameters of this de-
terministic function, i.e., g—‘;(z). This is a handy trick, since sampling is often considered a

non-differentiable operator. Despite its usefulness, it is not always possible to come up with
such reparametrization.
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We can then use this stochastic gradient estimate to find the solution to .

Looking at the gradient above, we can however see what this gradient direc-
tion points at. Particularly, the first term considers directions that are similar
to the mean p, but with some noise. We then weigh each such direction (or the
difference between this direction and the current estimate of u,,) by their qual-
ity, where the quality is defined as how similar the decoded observation, F'(z; ),
is to the actual observation z,, (notice the negative sign that turns this distance
into the quality.) In other words, we look for the change to y, that makes the
decoded observation closer to the actual observation. This makes perfect sense,
from the perspective of p(y|z). The second term simply brings u,, toward the
origin at the rate inversely proportional to the prior variance which is inversely
proportional to the regularization strength.

This lack of an analytical solution to u, is problematic, because we must
keep ., for all N training examples across E-M iterations, even with stochas-
tic gradient descent. At each iteration, we would select a small number M of

g . . . M
training examples, retrieve the associated observations {x,,}, _, as well as the

associated current estimate of the posterior means {um}fle, update the pos-

terior means slightly following the gradient direction, update the parameters
slightly following the stochastic gradient direction, and finally store back the
updated estimate of the posterior means. This does not put too much pressure
on computation but it puts a huge pressure on the storage and I/0, as we need
O(b x |z| x N) bits to store the posterior means.

Amortized inference. Instead of storing the approximate posterior means
for all the training examples, we can compress them into a powerful deep neural
network. Let G : X — RI*l be an inference network, as we will ask G to ap-
proximately infer the posterior over the latent variable given an input z. This
G is also parametrized by its own set of parameters 6. This inference network
. . . M .
effectively work as a compressed version of the table containing {tm },,,_;, since
we can retrieve i, by

tm = G(Tm; 0c). (4.78)

In fact, this inference network even allows us to retrieve an approximate poste-
rior distribution given a novel input z’ ¢ D thanks to its generalization capa-
bility.

Let us now plug this inference network G into the per-instance objective
function from Eq. (4.70):

1 T
In = Eong(2:G(@ni06),0%) [—2% — F(z0)|” - L log 27T] (4.79)

2
1K ”G(xruéG)”Q
2 2

- K+2K ln(o)} . (4.80)

g

Because of the expectation is difficult to evaluate, we will consider a single-
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sample estimate of J,,:

- 1 1
Jn = =5 le = F(G(i06) + 06 0)|* = o5 |Glrai6)|* + const.,  (481)

where € ~ N (0,1).

There are two non-constant terms in this approximate objective. The first
term is the reconstruction error. The input z, is processed by the inference
network G first, and then the noisy version of the output of G is then processed
by F' to reconstruct the input. The objective is maximized when the difference
between the original input and the reconstructed input is minimized (see the
negation in front of the L2 norm.) This process is often referred as autoencoding,
and this is why this whole framework is called a variational autoencoder [Kingma
and Welling, 2013].

The second term is a regularizer that pushes the L2 norm of the output from
the inference network to be small. This ensures that all the inputs {x1,..., 25}
are mapped to the latent space, i.e. the space of the latent variable z, as tightly
as possible. Without this term, the norm of the output of G' can grow indefinitely,
pushing the inferred posteriors of all the inputs to be as far away as possible,
since this would ensure that F' can reconstruct the original input perfectly even
with the injected noise. This would however make it impossible for F' to cope
with any z sampled from the prior or located between any pair of inputs’ inferred
posterior distributions, resulting in a lousy generative model.

Thanks to the reparametrization trick, we can compute the gradient of J,
w.r.t. all parameters, including those of F' and those of G. In other words, we
can use backpropagation to train both the inference and generation networks,
G and F, respectively. This allows us to train the inference network extremely
efficiently, without having to maintain a whole database of instance-specific ap-
proximate posterior parameters. Furthermore, as discussed earlier, this inference
network can be used with a novel input, making it useful for analyzing a set
of inputs that are not present during training. The approximate posterior com-
puted by the inference network can be further finetuned using gradient descent
to match the true posterior better [Hjelm et al., 2016].

Perhaps more importantly, this implies that such end-to-end learning of in-
ference and generation networks is possible with backpropagation and stochastic
gradient descent as long as we can use a reparametrization trick to sample from
an approximate posterior without breaking the differentiability. This opens wide
a door to a whole new set of opportunities to scale up various probabilistic mod-
els that were cumbersome to derive and use before, although these are out of
the scope of this course.

4.3.2 Importance sampling and its variance.

Before ending this section, let us think of how we should compute the log-
marginal probability of an observation z from Eq. (4.69):

p(z) = Esnp(z) [p(2]2)].- (4.82)
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Unlike in the training time, we are less under time pressure, and therefore a
natural approach would be a naive Monte-Carlo approximation:

p(|2m), (4.83)

where 2, ~ p.(2).

Unfortunately this naive approach can have a large variance. For brevity, let
f(z) = p(x|z) and p(z) = p,(z). Because we already know that it is unbiased,
we can then write the variance as

mZ_lf@m)] = ﬁ ;V[f(zm)] = #MV [f(2)] = V[ﬁzﬂ,

(4.84)

A\

1 X 1
Mmz:;f(zm) :WV

because z,,’s are identically distributed according to p(z).

It turned out that we can reduce this variance by avoiding sampling from p,
directly but from another distribution ¢,. This technique is called importance
sampling:

_ p=(2) Ni - p=(2m) .
R [~ VOIS D v VORI LY

We can then control the variance of this estimator by choosing ¢, carefully.
To understand how we can choose ¢, carefully, consider the variance of this
estimator:

i - Pz(2m) _ i Pz(2m) 5
U qz(zm)f(zm)] B s
Let’s plug p(z|z) and p.(z) back in:
1, [p:(zm) _ 1 [p(=]2)p(2)
3 [ ) | = v [PEERE)), (187)
By using V[X] = E[X?] — E[X]?, we get
pl)p) ] _ [ pll)?pD2
V{ a(2) } —/ ) dz — const. (4.88)

The second term is constant w.r.t. ¢, because that is nothing but the original
quantity we are trying to approximate.
Recall the following definition of Cauchy-Schwarz inequality:

(o, 0)* < () (v, 0), (4.89)
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where (-, -) is an inner product that generalizes a standard dot product. We can
define an inner product on the square-integrable functions® as

(f.9) = / f(@)g(x)dz (4.91)

over the domain of x. Then, we can write the Cauchy-Schwarz inequality as
/f(ac)g(x)dx < /fQ(;C)d:C/QQ(LE)dLC. (4.92)

Because [ ¢(z)dz =1 by definition, we observe that

J () o) (o) (/) = (s

=1

2

(4.93)

Considering both sides carefully, we see that they are equal when
Cq(z) = p(z|2)p.(2). (4.94)

This is easy to check by plugging it into the left hand side of the inequality

above:
/ (CZ((zz))>2dz (/ q(z)dz) =2, (4.95)

and then into the right hand side of the inequality:

(/ Cq(z)dz>2 =C2 (4.96)

Because [q¢(z)dz =1,

C= /p(x|z)pz(z)dz (4.97)

Putting them all together, we get the following optimal ¢:

o ()
T = Toll ()8 o

5A function f is square-integrable when

/f(x)d:r < oo. (4.90)
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which turned out to be exactly the posterior distribution over z given x. In other
words, if we sample from the posterior distribution instead of the prior distri-
bution and reweigh p(z|z) according to their ratio pl()ifi), our approximation is
both unbiased and has the minimal variance.

This is however not the right way forward, since the posterior probability
has in its own denominator the intractable integral. Rather, this says that the
so-called proposal distribution q¢ must be close to the true posterior distribution
p(z|z), which is in fact exactly the criterion we used to derive the variational
lowerbound earlier in §4.2. When the variational lowerbound, which serves as the
objective function for latent-variable models, is maximized, the KL divergence
between ¢ (the approximate posterior) and p (the true posterior) shrinks. In
other words, we can simply use the trained ¢ inference network as the proposal
distribution to approximate the log-marginal probability of an observation x
after training to obtain an unbiased, low-variance estimator of the quantity.® It
turned out maximizing variational inference had yet another advantage.

SThe variational lowerbound can be used as a proxy to the log-marginal probability as well.
This is indeed a standard practice during training, to monitor the progress of learning. This
quantity is however a biased estimate of the log-marginal probability, and it is important to
use importance sampling to check the true log-marginal probability.



Chapter 5

Undirected Generative
Models

We have studied a few different approaches to generative modeling in the pre-
vious chapter. These approaches can be thought of as fitting a directed graph-
ical model where there are two variables, the observation x and the latent z.
These two variables are connected by a directed edge going from z to x. In
this model, we defined two relatively simple, or perhaps more correctly rela-
tively easily-described, distributions, p(z) and p(z|z) but were able to model a
complicated distribution over the observation by the process of marginalization,
p(z) = [p(2)p(x|z)dz. Now, we must ask whether there are other ways to do
the same.

5.1 Restricted Boltzmann machines: the Prod-
uct of Experts

We begin with a pretty old idea called restricted Boltzmann machines [RBM;
Smolensky, 1986]. An RBM defines a bipartite graph with undirected edges
between two groups; z and z. Each partition consists of the dimensions of the
observation = or the latent z . These partitions are fully connected with each
other, but there is no edges within each partition. Each edge has a weight
value, resulting in a matrix W e RI*I*I2l | Each node also has its own scalar
bias, resulting in two vectors b € RI*l and ¢ € RI*l. We then define an energy
function as

e(z,2,0 = (W,b,c))=—a " We—x'b—2"c (5.1)
|| =] || ||

= — Z Zwijscizj — leb" — ZZjCj. (52)
i=1 j=1 i=1 j=1
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Although it is not necessary for x, we restrict z to be a binary vector: z €
{0,137,

As we have done over and over so far, we can turn this energy function into
the joint probability function:

logp(z,2;0) = —e(x, 2,0) log/ Z exp (—e(z’,2/,0))da’, (5.3)

- r€{0,1}!*!

where X is a set of all possible values x can take. If X is a finite set, we replace
J with 3.

Let us focus on the normalization constant, Zz’e{oql}h‘ exp(—e(z, 2, 0)).
Since '

exp(a + b) = exp(a) exp(d), (5.4)
we can rewrite it into
x| |z || |2|
exp(—e(z, z,0)) H H exp(w;;;2;) H exp(x;b;) H exp(z;c;)

i=1j=1 i=1 j=1

(5.5)

|| |zl
zl_[exp(ar;Z i H exp(wi;xiz; + 2;¢5). (5.6)

Now, I want to marginalize out z from this expression. In most cases, this
would be intractable, because there are 2/?| possible values z can take. This
bipartite structure however turned out to be a blessing we can rely on.

Let’s consider the following simple case:

> H fi(z) = £1(0)f2(0) + £1(0) f2(1) + (1) f2(0) + fr(1) f2(1)  (5.7)

z€{0,1}2 j=1

f1(0)(f2(0) + f2(1)) + f1(1)(f2(0) + f2(1)) (5-8)
1(0) + f1(1))(£2(0) + f2(1)) (5.9)

=(f
H )+ fi(1)). (5.10)
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Instead of summing exponentially many terms, we can multiply |z| terms only:

|| ||
Z exp(—e(z,z,0)) = Z Hexp(xibi) H exp(w;;xiz; + z;¢j)
ze{0,1}!7! z€{0,1}/= i=1 i=1
(5.11)
Ed |z

H exp(x;b;) Z H exp(w;jziz; + zjc;)
i=1

ze{0,1}/#1 j=1

(5.12)

|| |2l
= exp Z:clbZ H (14 exp(wijz; +¢;)) (5.13)
(5.14)

You can think of the left-hand side of this derivation as the unnormalized
probability function p(zx; 8) of z, since the normalization constant of p(z, z; ) is
neither a function of x nor z. In that case, we can write it down as

||
p(x;0) x ¢o(x) H oi(z), (5.15)
where
log ¢o(x) = = ' b, (5.16)
log ¢, (x) = log(1 +exp(w3x+cj)). (5.17)

We call each ¢p an expert, and this is a typical formulation of a product of
experts [PoE; Hinton, 2002].

PoE’s are unlike a mixture of experts (MoE), such as a mixture of Gaus-
sians from §4.2.1. MoE’s have a significant advantage over PoE’s in that they are
readily normalized as long as each and every expert is well-normalized. PoE’s
however can model a much sharper distribution, unlike MoE’s. The entropy of a
MoE is always lowerbounded by the entropy of an individual component. This
is not the case with a PoE, because the scores from the experts are multiplied
rather than averaged. It is possible for any one expert to simply veto by out-
puting a value close to 0, while this wouldn’t affect the overall outcome in the
case of an MoE.

We use the log-likelihood objective, averaged over the whole training set, for
training this RBM:

Ly(z,0) =e(x,0) + log/exp (—e(2',0))dx’. (5.18)

Just like earlier, we use stochastic gradient descent, and to do so, we need to
be able to compute the gradient of this per-example loss w.r.t. the energy e.
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Once we can compute it, we can use the chain rule of derivatives to compute
the gradient w.r.t. each parameter. So,

exp(—e(’,0))

Ly = 0) — " 9)dx' 5.19

VoLy =Ve(z,0) Fexp(—c(”, 8))da" Voe(z', 0)dx (5.19)
=p(x’;6)

=Voe(z,0) —E,.oVe(x',0). (5.20)

=(a) =(b)

There are two terms in this gradient. The first term (a) is called a positive
phase, since it proactively decreases (recall that we are taking the negative gra-
dient direction) the energy of the positive example, where the positive example
refers to one of the training examples x from the training set. The second term
(b) is called a negative phase, where it proactively increases the energy of a
configuration z’ that is highly probable under the current model, i.e. p(z’; ) 1.
This is exactly what we saw earlier when we learned about the cross-entropy
loss for classification in §2.1.2.

Unlike the cross entropy with softmax earlier, we are in a worse situation
here, because the number of possible values = can take is much greater. In fact,
it is exponentially larger, since we often use RBMs or any of these generative
models to model a distribution over a high-dimensional space. In other words, we
cannot compute the negative phase (b) exactly in a tractable time, or sometimes
we just do not know how to compute it at all.

In the remainder of this section, we study how we can efficiently draw these
negative samples and use them for learning.

5.1.1 Markov Chain Monte Carlo (MCMC) Sampling

Let’s imagine that we want to draw a set of samples from a complicated target
distribution p*(x). It would be great if we could draw samples independently in
parallel, but this is often impossible. Rather, we need to come up with a way to
draw a series of samples such that collectively they form a set of independent
samples from the target distribution. How would we do this?

We do so by defining a Markov chain (X,p°, 7), where X is the set of all
possible observations (i.e. the state space), p° is the initial distribution over &',
and T is a transition operator. The transition operator is really nothing but a
conditional distribution over X given a sample from X, i.e., T(z|z"). We can
draw a series of observations (z1, z2, . ..) by repeatedly sampling z; ~ T (z|x;—1)
with g ~ po(z). Eventually, that is, the latter part of this series of repeated
sampling, we want those samples to be drawn from the target distribution p*(x).
In other words, we want a stationary distribution p°°, which is the normalized
cumulative visit counts for all states and satisfies

p> = Tp™, (5.21)

to match p*. Once we converge to the stationary distribution, which matches
the target distribution, we can simply apply the transition operator repeatedly
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and be convinced that the collected series of samples form collectively a set of
samples from the target distribution.

In addition to this condition (p> = p*), we need to meet an extra condi-
tion. That is, this stationary distribution has to be unique. If there are other
stationary distributions, we may not be able to tell that even after running
this transition operator indefinitely that we are collecting samples from the true
distribution. To do so, we further put a constraint that this Markov chain is
ergodic. In an ergodic Markov chain, any state (or a region of the state space, in
the case of an infinitely large X') is reachable from any other state within a finite
number of transition steps. This ergodicity guarantees that there is only one sta-
tionary distribution, and that repeated applications of the transition operator
will eventually converge toward this unique stationary distribution.

Sampling from a complicated target distribution p* then boils down to de-
signing a transition operator 7 such that the resulting Markov chain has a
unique stationary distribution. The next question is how we can guarantee that
there exists a stationary distribution, since the ergodicity tells us that there is
a unique stationary distribution if there is a stationary distribution under this
Markov chain. There are more than one way to do so, and one relatively well-
known way is the principle of detailed balance. Detailed balance in a Markov
chain is defined as having the transition operator 7 satisfy

T (@ |2)p™ (2) = T (x|2")p™ (). (5.22)

As pretty clear from the equation, it says that whatever flows from one state
to another must flow back. This is stronger than having a stationary distribution,
as a stationary distribution p> may not satisfy this. When detailed balance is
satisfied, we often refer to such a Markov chain as a reversible Markov chain,
since we will not be able to tell the direction of time once it converged.

Our goal is then to design a transition operator 7 such that the resulting
Markov chain is ergodic and satisfies detailed balance.! We refer to the procedure
of sampling by collecting a series of visited states from such a Markov chain by
Markov Chain Monte Carlo (MCMC) methods.

One of the most popular and widely-used MCMC algorithm is Metropolis-
Hastings (M-H) algorithm [Hastings, 1970]. The M-H algorithm assumes that
we have access to the unnormalized probability p*(x) of the target distribution:

" p*(x)
p*(x) Th @ (5.23)
This assumption makes the M-H algorithm particularly suitable for many energy-
based models, such as restricted Boltzmann machines (RBM), since we can easily
often the unnormalized probability but cannot tractably compute the normal-
ization constant.

1This statement does not exclude the possibility of designing a Markov chain that allows
us to sample from a target distribution even when it does not satisfy detailed balance. Fur-
thermore, this statement does not exclude the possibility of expanding the state space by
augmenting x with an extra variable. It has been shown that this can be beneficial with
so-called Hamiltonian Monte Carlos methods [Neal, 1993].
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We first assume we are given (or can create) a proposal distribution g(z|z’)
that is often centered at x’ and whose probability mass is largely concentrated
in the neighbourhood of x’. ¢ must be ergodic, that is, if we repeatedly sample
from ¢(x|z"), we should be able to reach any state (or a region of the state space)
within a finite number of steps. We then define an acceptance probability «(z|z’)
such that

a(z]z’) = min (1 pwqw) (5.24)

TP (a)g (]

Then, the transition operator is

T(ale!) = a(ala)a(zle’) + (1 — a(zla))s (2), (5.25)
where
bur() = {°°’ i = (5.26)
0, otherwise
and

/dxl (x)dx = 1. (5.27)

We can sample from this transition operator given the past sample z’ by

(1) & ~ q(z|z") (Candidate generation) (5.28)

(2) a ~ U[0,1] (Random draw) (5.29)
5 it a < aldly

(3) x = nonus a(x|x ) (Acceptance) (5.30)
7/, otherwise

This transition operator satisfies both ergodicity and detailed balance, and
a lot of MCMC algorithms can be viewed as variants of the M-H algorithm with
particular choices of the proposal distribution gq.

Gibbs Sampling. Let’s assume that z is a finite-dimensional vector. We can
then define a conditional probability over one particular dimension d given all
the other dimensions # d as

, ([, @y, T Ty X))
Pa(Zq|T - = p —. 5.31
(@aly, . a-varn o) Sy, a2 xl . Typ])dE (5:31)
Assume d follows a uniform distribution, i.e. d ~ U {1,2,...,|z|} and we start
from o' = [zf,... ,xm]. We now replace the d-th dimension of z by sampling

from the conditional distribution pg, resultinginz = [z/,...,25_|, Ta, T} ;.- ,x?ml].
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In order to compute the acceptance probability, we must compute

") P[], 7I2lfl7xdvx:i+17 o »$Ix|])pd(93:1|[$/17 B 7171171@1#1’ e JM])

(z)pa(z

ﬁ*
(" )pa ()2’ ([, . .. ,x?w‘])pd(ﬂdem’l, T Ty ,xiwl])

(5.32)

In other words, the acceptance probability is 1, and we always accept this new
sample which differs from the previous sample in just one dimension d.

This procedure is called Gibbs sampling. We pick one coordinate, sample
from the conditional distribution of that particular coordinate, replace it with
the newly sampled coordinate value and repeat it. This procedure is often ap-
plicable even when we have access only to the unnormalized probability, since
the conditional probability is often tractable in that case. Furthermore, because
every sample is automatically accepted, there is almost no extra overhead in
implementation, which makes it an attractive algorithm choice.

Variational inference would not work. Based on what we have learned
in §4.2, one may wonder whether we could use variational inference instead of
MCMC sampling. The answer is unfortunately no. The core idea of variational
inference is to approximate a complex target distribution (the posterior distri-
bution in §4.2; and here the target distribution p*) with a simpler distribution
q by minimizing

KL(gl[p*) = ~Egnq [log 5 ()] + log / F@)de+Hg).  (5.35)
—_——

const. w.r.t. q

If we focus on the first term of the KL divergence, we observe that we only
care about the region of the observation space where ¢ is high. That is, the KL
divergence only cares about the highly probable regions under ¢ and ignores any
other regions that are highly probable under p* but not under g. In other words,
samples we draw from ¢ after minimizing the KL divergence above would not be
representative of p*, because they will largely miss high probable regions under

*

p*.

This issue disappears as the complexity of ¢ increases and approaches that
of p*. This however comes with the very issue we want to solve; that is, we must
sample from this equally complex ¢ in order to approximately compute and
minimize the KL divergence above. Later in this chapter, we consider directly
building a sampler so that an implicitly defined ¢ is both complex enough and
approximately minimizes the KL divergence above.
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5.1.2 (Persistent) Contrastive Divergence

We need to sample from p(z; ), to train an RBM. One way to produce a set of
samples from p(x; 0) is to draw a set of (x, z) samples from p(z, z; 0) and discard
z from each pair. In doing so, we want to use Gibbs sampling. Let us first try
to write down the conditional probability of z given x:

||

log p(z|x; 0) = ZZJ Zw”xl—&-c] + const. (5.36)

This implies that the z1, ..., 2|, are conditional independent given x, as

(5.37)

2|
exp ZJ w.. CE+C]))
|ac 9 1;[ Jrexp (w I+CJ)

We thus can look at each dimension of z separately:

exp(w,—';x +¢j) 1

= 1]x;0) = — T ),
Pz [2:9) 1+ exp(w |z + cj) 1+ exp(—wz — ¢;) olw;zte;)
(5.38)
where o is a sigmoid function we saw earlier:
()= 1 (539
ola) = ——. .
1+ exp(—a)

Sampling all |z| dimensions is embarrassingly parallelizable, since they are
conditionally independent. Let’s say we have sampled a new z. We now need to
sample a new x given z. Following a similar derivation, we end up with

p(z|z; 6) Hp (x4]2;0), (5.40)

where
p(z; = 1|2:0) = o(w] z + b;). (5.41)

In other words, we can also sample all dimensions of x in parallel as well.

We can then alternate between sampling = and z repeatedly to collect a
series of (z,z) pairs that collectively constitute a set of samples drawn from
p(x, z;0). Of course, we want to probably throw away quite a few pairs from the
early stage of sampling, as they have likely been collected before the Markov
chain converged. Furthermore, in order to avoid the potentially slowly mixing
rate of the Markov chain, we might want to use only every k-th sample. This
strategy is often referred to as thinning.

Of course, this does not really help us too much, since we must run a pretty
long chain of Gibbs sampling in order to collect enough independent samples.
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If we run it too short, our stochastic gradient estimate will likely be incorrect,
resulting in a disastrous outcome.

Instead, it turned out that we can simply start the Gibbs sampling chain
from a positive example, run it only a small number of steps (as few as just one)
and use the resulting sample as the negative example. That is,

S
1
VoL*(0;2) = Vee(z,0) — — Z Ve(zl,0), (5.42)
—— S a—1
=positive
=negative

where 2/, is one of the S samples drawn after running k steps of Gibbs sampling
starting from x. It is usual to set S to 1. In the limit of £ — oo, this is exact,
since the negative sample 2’ would be from the stationary distribution which
coincides with the true distribution p(x;#). It is however not so with a finite k,
and there is not even a guarantee that a larger k leads to a better approximation,
when k is small. This strategy nevertheless results in a reasonably well trained
RBM and is often called contrastive divergence.

It turned out that we can maintain the computational complexity with a
minimal overhead in memory complexity by maintaining S samples across mul-
tiple stochastic gradient steps while ensuring that learning converges to the
exact solution asymptotically. We do so by running S chains of Gibbs sampling
in parallel to stochastic gradient descent. Between consecutive steps of SGD,
we run S chains of Gibbs sampling for 7" ~ 1 steps each to update the a set
of S samples that are more likely to have been drawn from the latest model.
Then, we use these newly updated samples to compute the stochastic gradient
estimate, to update the model parameters.

As learning continues, the change to the model parameters slows down (since
we are getting increasingly closer to a local minimum), and thereby Gibbs sam-
pling chains in the background are increasingly getting closer to the stationary
distribution of the final model. This makes it such that the early stage of learn-
ing is inexact but has a low variance (because we are not perturbing negative
examples too much) but the later stage is exact since the model parameters
change very slowly. This strategy is called persistent contrastive divergence.

5.2 Energy-based generative adversarial networks

It is challenging to draw samples from a complex, high-dimensional distribution
even with an advanced MCMC algorithm. Instead, we may want to consider
training a neural network to draw samples from such a distribution. Any such
neural network can be described as

v = g(e6,), (5.43)

where € ~ p(e) and p(e) is some easy-to-sample distribution of our choice. This
sampler is parametrized by 6,,.
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We can train this sampler by minimizing the following loss function:

Lna(0y) = KL(pg|[pe) = —Eunp, [logpe(z) —log py(z)] (5.44)
= _]Eacwpg Unge(m” _H<pg)a (545)
—_— =

=(a) =(b)

where pg is the distribution underlying the sampler g and p. is the distribution
defined from the energy function e using the Boltzmann formulation. We will
consider two terms in this loss function separately.

The first term (a) is the negative expected energy of  plus some constant:

(@) = Bony, logp. ()] = E |~e() ~ 1o [ expl-car| (5.0

= E [—e(z)] + const. (5.47)

Although we do not have p,, we can draw samples from this distribution with
g. We can thus compute the stochastic gradient of (a):

M
5, ~ =27 2 Vo,elglem)), (5.48)

where €,, ~ p(e). As long as g is differentiable w.r.t 6, and e is differentiable
w.r.t. the input, we can compute this stochastic gradient using backpropagation.
By following the opposite direction to this stochastic gradient, we can effectively
minimize the first term (a).

Unfortunately, (b) is less trivial to compute, since we do not have access to
pg- Instead of maximizing the entropy (see the negative sign in front of (b),) we
can try to make p, closer to another distribution that potentially has a higher
entropy. Assuming that X is a multi-dimensional real space, i.e. R?, the normal
distribution is the maximum entropy distribution given a mean and a covariance
matrix. We can thus draw many samples from p, using g, estimate the mean p
and covariance X, from these samples and then use the normal distribution with
tg and adl, as the mean and covariance, respectively, as the target distribution
with a higher entropy than pg, with o > 1.

When we have two sets of samples drawn from two distributions, we can
use a kernelized maximum mean discrepancy (MMD) to measure the similarity
between these two distributions. Unfortunately, it is definitely out of the scope
of the course to discuss MMD and its kernelized estimator [Gretton et al., 2012].
Instead, we will trust that the following measures the discrepancy between two
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distributions when we have only two sets of samples:

2 /
MMD?(D, D) = BD=D |D| 5 Y k(@) (5.49)
z€D x’ €D :x'#x

=(@)
Y= n |D'|_1 Yo > k) (5.50)

z€D’ x'€eD":x’' #x
=(b)

|D||D’\ Z Z k(x,x) (5.51)

xzeD x'eD’

=(c)

where k(-,-) is a kernel function. We will not discuss what kernel functions are,
but you can think of the kernel function as some kind of a distance metric, such
that any kernel function k(a, b) satisfies two properties. First, it is symmetric:

k(a,b) = k(b, a). (5.52)
Second, it is semi-positive definite:
" Kz >0, for all z € R", (5.53)

where K is an n X n matrix with each entry K;; = k(v;, v;) for any set {v;}]_,.
For real vectors, one conventional choice is a Gaussian kernel defined as

k(a,b) = exp (012 la — b||2> . (5.54)

Because the kernelized MMD above is differentiable w.r.t. the samples, as long
as the kernel function was selected to be differentiable, we can compute the
gradient of the MMD w.r.t. the parameters of the sampler g and use it in place
of the gradient of (b) from Eq. (5.55).

Although we will not go into any technical detail behind this kernelized
MMD, it is instructive to inspect it at an intuitive level. Let us start from
the back. The third term (c) is intuitively correct, as it computes the average
pair-wise distance between all possible pairs of samples from two distributions. If
the average pair-wise distance is larger, the discrepancy between two underlying
distributions must be high as well.

Let’s assume |D| = |D’| (that is, we have the same number of samples
from each distribution.) Then, the minimum this pair-wise distance can at-
tain is determined by the average pair-wise distance within each set, since all
these samples would be placed on top of the samples from the other distribu-
tion. Furthermore, when this happens, the first two terms, (a) and (b), would
coincide with each other. Considering that the first two terms and the final
term have opposite signs, they would cancel out each other, resulting in 0, as
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desirable. In other words, (c) determines the overall discrepancy between two
distributions, while (a) and (b) are there to take into account that the mini-
mum discrepancy between two distributions is largely bounded from below by
the intra-distribution dispersion.

By minimizing the following loss, we can train a sampling network g that
transforms a sample from a simple distribution p(e) into a sample from the
target distribution defined from the energy function e:

N
Tolby6) = =2 > elglen)) ~ AMMD? ({52, {glen)}o, ), (5:59)
" =R(0,)
where
1 M
Sn~ N (u =7 > g(em)7a2> (5.56)
with
1 & -
L=7 2 (alem) = 1) (glem) =) (5.57)

It is important to treat s,’s as constants rather than the functions of €,,’s. A > 0
controls the balance between these two terms.

Now, we can use this sampler g instead of using a costly MCMC sampler
to draw samples from an energy function. In other words, we can compute the
gradient for the energy function from Eq. (5.19) by drawing samples from this
sampler g:

M
- 1
Vo = Voe(r,0) — > Voe(wm,0), (5.58)
m=1

where z,, = g(€m;0,) with €, ~ p(e).

If you look at the first term from Eq. (5.55) (the objective function to be
maximized for training g) and the second term above, it is easy to see that they
are identical. We can then put these two together into a single objective function
and then see that we can train both the energy function and the sampler jointly
by solving a minimax problem:

min B €(2,6)] ~ Byt elo(6:6,). 0] = ARG, (5.59)

In words, we try to adjust € to ensure training instances are assigned lower
energy values, while the samples drawn from p, are assigned higher energy
values. Meanwhile, we ensure that the sampler g draws samples that are assigned
lower energy values and that the implicit distribution p, s entropy is maximized.
Because we are not reliant on Gibbs sampling, we can be much more re-
laxed about how to design an energy function, unlike with the RBM above. A
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natural choice is a deterministic autoencoder which is similar to the variational
autoencoder from §4.3.1 however without any noise in the middle. With the
deterministic autoencoder, the energy function is defined as

e(x;0) = |[F(G(x:0c); 0r) — «|?, (5.60)

where 0 = 0 U 0. The energy value is lower if « can be reconstructed better.

One can view this as the energy function e and the sampler g are playing
an adversarial game. The energy function’s job is to ensure that the sampler’s
samples are less likely than the true inputs, while the sampler’s job is to ensure
that the generated samples are as likely as true inputs according to the energy
function. This approach was pioneered by Goodfellow et al. [2014], and this
particular way to describe this approach using the energy function was explored
soon after by Zhao et al. [2016]. Once training is over, one can either use the
sampler as is, or can use the sampler as the initialization for sampling from the
trained energy function.

5.3 Autoregressive models

We have so far considered a family of generative models, called latent variable
models. Regardless of whether the probabilistic dependencies were described
using directed or undirected edges, we used unobserved variables, or latent vari-
ables, in order to capture complex distributions. For each latent variable config-
uration, we define a relatively simple distribution over the observation. We call
a distribution simple when this distribution has a small number of parameters
and if we can build a differentiable neural net that maps the latent variable con-
figuration to these parameters of the distribution. By marginalizing out these
latent variables, we end up with a model that is able to capture a complex
distribution. Then, is there any alternative?

Such a simple distribution is often inadequate to capture all variations of a
full observation X which almost always consists of simpler (lower-dimensional)
constituents, i.e., X = {x1,...,24}. Such a simple distribution is however often
enough to capture the conditional distribution over an individual constituent
which is often significantly lower-dimensional. For instance, if z; is a categorical
variable with C' categories, we can easily use softmax with C' parameters to
capture this distribution. X however can take C? many possible values, and
this will not be easy to capture with simple softmax based parametrization. It
is then tempting to imagine modeling these d constituents of X separately and
combine them to build a model of X.

Recall the chain rule of probabilities:

p(X) = p(@n))p(@ne lzun))p(@ne) lena), 2ne) - (5.61)

d
= Hp(!ﬁn(i)|$n(1), e TII(—1))s (5.62)
=1
=(a)
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where II is an arbitrary permutation of (1,2,...,d). This chain rule states that
the probability of any configuration of X can be computed as the product of
the probabilities of the d constituents, appropriately conditioned on a subset of
constituents. Without loss of generality, we assume II(:) = 1.

Our goal is to build a neural network that models (a) above and thereby
model the joint probability function p(X). There are two things to consider.
First, we do not want to have d separate neural networks to capture d conditional
probability distributions. We instead want to have a single neural network that
is able to model the relationship between any pair of the target dimension x;
and the context dimensions z.; = (x1,...,2;-1). This allows the predictor to
benefit from patterns shared across these pairs. For instance, if x; was the i-th
pixel in an image, we know that the pixel value of x; must be somewhat similar
to x;_1, regardless of 7, due to the locality of pixel values. This knowledge should
be more readily captured if a single predictor is used for all 4.

Second, the number of parameters should not grow w.r.t. d, i.e., |0| = o(d). It
is in fact desirable to have |#] = O(1), by having absolutely no dependency on d.
This enables us to build an unsupervised model that can work on a variable-sized
observation, which is critically important when dealing with variable-length se-
quences, such as natural language text and video.

Combining these two considerations, we can now write this approach in the
form of

x; ~ G(F((x1,22,...,2-1);0),€), (5.63)

where € is noise. This reminds us of autoregressive modeling in signal process-
ing,? and thus we refer to such an approach as autoregressive modeling, as this is
akin to a nonlinear autoregressive model with an unbounded context (p — 00).

Two building blocks from §3 are particularly suitable for implementing F'; a
recurrent block and an attention block (with a positioning encoding.) In the case
of a recurrent block, we do not need any modification, but can simply feed in the
entire sequence (xg, 1, T2, . . ., zq) and read out (p(x1), p(z2|z1), . .., p(Td|T <))
More specifically, if we use gated recurrent units,

hi = FGRU([xi,hi_l];HT) (565)
exp(uT h; + Cxi+1)

Tit1

Ywec exp(ug hi + ca)’

where hg is a part of the parameters, and x( is a placeholder vector. We can
then train this recurrent network to minimize the average log-loss:

p(Titi1]r<i) = (5.66)

N dp

Jnin = Z:lglogp(xi |22 0., U, c), (5.67)

2A typical autoregressive model of order p is signal processing is defined as

p
k=1
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where we are being explicit about the possibility of variable-size observations
by writing d,,.

The attention block however requires one small modification. This mod-
ification is necessary, since we must ensure that h; is computed only using
(zo,21,...,2;). This can be implemented by masking out the attention weights
from Eq. (3.26) as

of = Pl ki —miy) (5.68)

N
ij:l exp(q;' kjr —mijr)

where

mij = {O’ < (5.69)
oo, ifj>i

This would ensure that the output v; from the attention block is not computed

using any input vectors (x;, 11, -..,xq). Some refer to this as causal masking

by borrowing from the concept of a causal system in signal processing.

We must be careful when we are dealing with continuous z;’s. We will discuss
why this is the case, and how we can deal with it properly in §6.4, if time permits.

A major advantage of this autoregressive modeling approach is that we can
compute the log-probability of any observation exactly. We simply need to com-
pute the conditional log-probabilities and sum them to get the log-probability
of the observation. This is unlike any latent variable approaches we have con-
sidered above. In the case of a variational autoencoder, we have to solve an
intractable marginalization problem, and in the case of RBM’s, we must com-
pute the intractable log-partition function, or the log-normaliztaion constant.
Furthermore, we can readily draw independent samples tractably with this au-
toregressive model, which is a great advantage for RBM’s which require costly
and challenging MCMC sampling.

This autoregressive modeling paradigm has become de facto standard in
building conversational agents in recent years since the successful demonstra-
tions by Brown et al. [2020] and Ouyang et al. [2022]. To learn more about the
fundamentals behind language modeling and related ideas, see this somewhat
outdated lecture note [Cho, 2015]. We do not go into any further detail, as these
topics are out of the scope of this course.
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Chapter 6

Further Topics

6.1 Reinforcement Learning

Single-step reinforcement learning. We are in a situation where we must
train a classifier but we are not given input-output pairs, but rather a black
box that takes as input one of the outputs and returns a scalar reward, i.e.,
R:{1,...,C} — R. This is truly a blackbox, unlike learning from §2.5 where
learning was a blackbox due to its intractability. We want to train a classifier
so that we maximize the reward by the blackbox on expectation:

The first question we often need to ask is whether we can compute the stochastic
gradient of this objective w.r.t. the parameters . Let us try that ourselves here:

C C
Vo [ @) Y sl 0)RG) = [ p(0) 90D plolesO)RE) dr. (62
y=1 y=1

=VEy|2;0 R(y)
We continue with VE, .0 R(y) :
c c
Vo Y p(yle;0)R(y) = Vep(ylz; 0)R(y) (6.3)
y=1 y=1
c
= p(ylz; 0)R(y)V log p(y|x; 0) (6.4)
y=1
where we used the so-called log-derivative trick.!
1
f'=f-(ogf), (6.6)
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In other words, the stochastic gradient of the expected reward given an
input x is the weighted sum of the stochastic gradient of the log-probability
assigned to each possible output, where the weights are the associated rewards
and the outputs are drawn according to the classifier’s output distribution.
This intuitively makes sense. We want to follow the gradient direction that
would encourage the classifier to put a higher probability on an output that is
associated with a higher reward, more so than the other directions. Because it is
often expensive (or even impossible) to run this blackbox, it is a usual practice
to use a single sample dranw from y|x; 6 to approximate this stochastic gradient:

where § ~ y|z; .
Before declaring the victory, let us compute the variance of this stochastic
gradient estimator:

V[g] = Elg*] - E[g)*. (6.9)

Although we know that this is an unbiased estimator because we have de-
rived it fully until we used single-sample Monte Carlos approximation (which is
unbiased on its own), let’s first compute E[g]:

E[g] = Eyjas0 [R(y) Vo log p(ya; 6)] (6.10)
= plylz; 0)R(y) Vo log p(yla; 0) (6.11)
= zy: R(y)Vep(ylz; 0) (6.12)
= vye > R(y)plylz; 0) (6.13)
= VeEzme [R(y)] (6.14)

Then, we need to compute the first term of the variance above:
E [§%] = Eypui0 [R*(v)[| Vo log p(ylz; 0)|%] (6.15)
Putting them together, we get
V3] = E [R*(y)|Viog p(ylz; 0)[%] — | VeE[R)]|I*. (6.16)

Looking at the first term of the variance, we notice that there are two things
that affect the variance greatly. The first factor is the magnitude of the reward.
If the reward has a high magnitude, it results in an increased variance of the

because
!

(log f)' = 7 (6.7)
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stochastic gradient estimate. This suggests that it is critical for us to control
the magnitude of the reward, although this is impossible if we are working with
the truly black box R. The second factor is the norm of the gradient of the
log-probability of the selected action w.r.t. the parameters 6. In other words,
the variance will be greater if the predictive probability computed by the model
is sensitive to the change in the parameters. This suggests a very explicit way
to regularize learning by minimizing this quantity directly, in order to stabilize
learning. This technique is often referred to as gradient penalty.

At this point, we begin to wonder if there is another stochastic estimator that
is equally unbiased but potentially has a lower variance. Consider the following
estimator, which is often referred to as a policy gradient estimator:

VoEyjai0 [R(y)] = (R(g) — b(x)) Ve log p(ylx; 0), (6.17)

where b may be a function of x but is independent of y. If we consider the
expected value of the left-hand side, we notice that

E [R(§)Vglog p(y|z;0)] — b(z) E [V log p(yl|z; 0)] . (6.18)
=(a)

Let us dig deeper into (a) above:?

C C C
> b0V lozpl) = Y pT Vo) = VS pw) =0 (619
y=1 y=1 y:i

In other words, the estimator in Eq. (6.17) is an unbiased estimator.

Although this estimator is identical to the original one in terms of the bias,
this extra subtraction of b(z) from R(g) has an important consequence for the
variance. Let us consider the first term of the variance using the new estimator
in Eq. (6.16). We are particularly interested to find b(z) that minimizes this
term:

VigEyiso [(R) ~ 05017 = —E [(RG) - Dlsw)I”] =0 (6.20)

= bE[s(y)|* —E [R(y)|s(y)II*] =0 (6.21)
. E[R@sy)?]
— b = —ELlE (6.22)

where s(y) = Vlog p(y|z; ). Unfortunately, this optimal baseline is intractable
or impossible to compute, since it requires us to query the blackbox R for each
and every possible outcome for the input z.

It is rather more informative to consider the upperbound to the first term
of the variance. Let ¢max = maxy—1,. ¢ ls(y)||? < oo, which we can encourage
by the technique of gradient penalty. Then,

E [(R(y) = b())*[|s()]*] < cmaxE [(R(y) — b(2))*] . (6.23)

21 will omit |z; @ for the brevity without loss of generality.
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The optimal baseline to minimize the upperbound on the right hand side is

v, C“;XIE (R(y) — )? = —cmax (ER(y) — b) = 0 (6.24)

In other words, the optimal baseline is the expected reward we anticipated given
the input x.

Of course, this quantity is again intractable or impossible to compute exactly.
We can however now fit a predictor of b* given x using all the past observations of
(7, R(7)), because each R() is a single-sample approximation to E g [R(y)].2
Because we update 6 along the way, many of the past samples would not be
valid under the current 6. If we however assume that 6 is updated slowly and
that the predictor is adapted rapidly, asymptotically this is an exact procedure,
just like persistent contrastive divergence from §5.1.2.

We then need to maintain two predictors. One predictor is often called a
policy network that maps the current input, or state, = to the distribution
over possible outputs, or actions. The other predictor is often referred to as a
value network that maps the current state x to the expected reward. The latter
is called a value network, because it predicts the value of the current state,
regardless of the action to be taken by the policy. These networks are trained
in parallel.

The case of noisy reward: an actor critic method. Let’s imagine that
the reward R depends on both z and y and that it is random as well. That is,
we observe only a noisy estimate of the reward at z given the output choice y.
We probably want then to maximize the expected, expected reward:

mgax Ey|a:;0]Ee [R(ya €T 6)] ’ (628)

where we use € to collectively refer to as any kind of uncertainty in the reward
R. Then, we have to further approximate the policy gradient with a sample
reward R(y,z):

~ (R(G,) — b(x:6,)) Vo log p(7]: ), (6.30)

3In particular, we should use a mean-squared error as the loss function when fitting a
predictor to estimate the expected reward. This comes from the fact that the optimal solution
to minimizing the mean-squared error corresponds to computing the average, as easily seen
below:

1 < 1< 1
VH—Z(u—xn)zz—Z(u—wn):u——Zmn:O (6.26)
2‘]Vnzl Nn:l Nn:l
1
Sp= ) T (6.27)
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where l;(x) refers to a predicted baseline, e.g. the value of x. 8, is the parameters
of this value function.

Unfortunately, this estimator will have an extra variance due to noisy reward.
Similarly to what we did with the baseline above, we can lower the variance by
predicting the expected reward at (x, %) using a predictor trained on samples.
That is,

VOEy|x;9E6 [R(y7 €T 6)} ~ (R(gv €Z; 07“) - Z)('T7 ob))VQ logp(g|x, G)v (631)
—(a)

where R is the reward predictor, parametrized by 6,.. Such a reward predictor
is often referred to as a Q value of the state-action (x,%) pair.* This difference
(a) between the Q value R and the value b is called an advantage, since this is
tells us about the advantage of choosing § over other outputs/actions.

An interesting observation here is that if we have I%(y,x; 0,) and if C, the
number of all possible y values, is small, we can replace the value network b with

b(x) = Eypap {J?(y, ; 0»] , (6.32)

which may help reduce the variance from having to train two separator pre-
dictors. With a reasonable C|, this can implemented quite efficiently by having
R to output a C-dimensional real-valued vector, multiplying the output with
the output from the y predictor (which is often called a policy) and sum these
values. Sometimes we call this R a critic and p(y|x;6) an actor. This approach
is thus called an actor-critic algorithm.

Multi-step reinforcement learning Let us assume there exist C-many
|X| x |X| stochastic transition matrix X(y) such that

c
Si(y) >0 and > Vi(y) =1, (6.33)
i=1
for y € {1,2,...,C}. This transition matrix gives us the distribution over the

next state given the current state x;_; and the selected action y;, as

q({L’ = k‘xtfhyt) = th,l,k(yt)y (634)

where we assume X is a finite set, although it is easy to extend it to a continuous
state space X.

In defining this transition operator ¢, we have made an important assumption
called Markov assumption. That is, at time t — 1, where we will end up at time
t given my choice of y; is independent of the past states (z1,...,zi—2) I have
visited so far nor the action choices (yi, ..., y:—1) I have made so far. We further

4Although almost no paper explicitly mentions what ‘Q’ stands for, it is widely acknowl-
edged that it stands for quality.
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assume that a reward function S* that is defined on each state and returns a
scalar, i.e. S* : X — R. Each time we transit from x;_; to x; due to y;, we
receive a reward S*(x).

Together with a policy 7(y|x; 0), it defines a distribution over trajectories, or
often called episodes. We can then sample a (potentially infinitely long) sequence
of tuples of previous state x;_1, selected action y;, next state x; and received
reward s; = S*(x;). Of course, these tuples are highly correlated with each
other, since they are collected from a single trajectory defined by a shared set
of distributions, the policy, transition and reward. We will however for now
ignore this by saying that we are considering a particular time step ¢ from many
independent trajectories.

Let us use n to refer to each of these trajectories. In order to apply the policy
gradient, or actor-critic algorithm, from above, we must start with the Q network
Q(az?_l,yl"). This Q network approximates the expected quality of (z}_,y7).
We define the expected quality by first defining the quality of (z} ;,y}) from
the n-th trajectory as

T,

Qay ,yp)=sp+ Y A sy, (6.35)
t'=t+1

where v € [0, 1] is a so-called discounting factor and T, is the length of the n-th
trajectory.

This formulation tells us that the quality of any particular state-action pair
is determined by the accumulated rewards from there on throughout the full
trajectory. Because we assumed the Markov property, it is perfectly fine for us
to ignore how we arrived at (z;—1,y:). With v < 0, we are specifying that we do
not want to take into account what happens too far into the future. This is often
a good strategy to facilitate learning in the case of finite-length episodes, i.e.
T, < oo, and is necessary to define the quality to be finite with infinitely-long
episodes, i.e. T}, — 00.%

This particular quality from the n-th trajectory can be thought of a sample
from a random variable Q(z}_1,y}) which is defined as

Q(m?—hy?) = S?JrEq(x,,\:ctfhy? [ (6'36)
7Eﬂ'(yt+1|5Et)q(wt+1|$t,yt+1) [S*(xt-‘rl)_" (637)
VE R (yosalzis)a(@era s vers) [s"(e42) + - H] - (6:38)

In other words, the expected quality is the weighted sum of all future per-step
rewards after marginalizing out all possible future trajectories according to the
transition model and the policy.

When we are working with finite-length trajectories, we can easily train the
Q network to minimize the following quantity:

min < S50 (R, uf) — Qi o)) (6.39)

5Unless v < 1, the quality easily diverges, assuming s; > 0 even when |s¢| < co.
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because Q is an unbiased sample drawn from the true distribution of the quality
defined immediately above.

Unfortunately this is not possible, if we are working with an infinitely-long
episode. Such an infinitely-long episode is not common in the current-day setups,
but it is something we aspire to working with in the future, where we would
anticipate a learning based system to be deployed in real world situations and
adapt itself on the fly. Of course, in this case, we must updaate the Q network
also on-the-fly. It is unfortunately not possible to get even a single sample Q,
since we never see the end of any episode.

Let us re-arrange terms in Eq. (6.35):

Tn
Qy_r,yf) =sp+ Y A" 'sp (6.40)
t'=t+1
T,
=si+7 | siy + Z ST I (6.41)
/=2

:Q(Ilﬂylﬂrl)
We see that the quality is recursively defined:
Qi1 y) = si + Q] yisa). (6.42)

This allows us to write a loss function to train the Q network without waiting
for the full episode to end (or never end) by considering the temporal difference
at time ¢:

N
1 D (1 n n D[, N 0 2
min - Z (R(xtfhyt 10,) — (st + R(x}, i1 GT))) (6.43)
" n=1
N 2
= min’ﬁ Z l]%(:c” LUl 0,) — R(x? g 1 6,) ) — 87 (6.44)
0, anl v t—1yrJt > tr Jt+1» t )

where 6, is a previous estimate of 6,.. We bootstrap from some random Q func-
tion (or its estimate) and iteratively improve our estimate of the Q function by
learning to predict the temporal difference. Unsurprisingly, we refer to this kind
of learning as the method of temporal difference [Sutton, 1988].

It turned out that such temporal difference methods are effective even when
we are dealing with finite-length episodes, when these episodes are long. It is
however generally challenging to train the Q network with such a temporal
difference method due to many factors. For instance, the objective function
above effectively tells us that the objective function itself is a function of our
previous estimate ér, meaning that a minimum one finds now will not continue
to be a minimum once you plug the new estimate 6, into 6,. Furthermore,
it will take a long time for the quality estimate the capture the longer-term
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dependencies of the choice of a particular action y;* at x}* ; on many steps later,
since the naive temporal difference only considers one step deviation at a time.
There have been many improvements proposed since the initial work, but it is
out of the scope of this course to cover those.

With this Q network (or the critic network, as we learned to call it above,)
we can rely on the policy gradient to update the policy (or the actor network)
from Eq. (6.31). There are of course many different ways to improve the actor
update, for instance by constraining the update to be somewhat limited. Again,
these are more or less out of the scope of this course.

6.2 Ensemble Methods

Bagging. As we discussed already multiple times throughout the course (see
e.g. §2.4.3)) we are often in a situation where we do not have just one predictor
but have access to many different predictors. These predictors can be thought
of as samples drawn from some distribution over all possible predictors:

0, ~ q(6). (6.45)

We will discuss where such a distribution comes from later, but for now, we will
assume it magically exists and that we can readily draw N classifiers from this
distribution q.

We already considered the case of having ¢ earlier in §2.4.2 when we consid-
ered the following bias-variance decomposition from Eq. (2.118):

Em,yﬂ(y - ]J(:C, 0))2 X EI Ey|1 [(y - ,uy)z] +E9 [(:’9(1‘7 9) - ﬂy)z] + (Uy - ﬂy)z )
=(a) =(b) =(c)

(6.46)

where
py =Eypz [y] (6.47)
fry = Eg [§(x,0)]. (6.48)

This decomposition was done on the loss averaged over the predictors drawn
from the posterior distribution g. We can instead consider the loss computed
using the average prediction from the predictors drawn from the posterior dis-
tribution. That is, our prediction is

J(x) = Eo [§(x,0)] . (6.49)
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Then,
Eay (y — §(2))* < B |Eypo (v — 1y)* —25(2) By [y] + 9% () (6.50)
N—— M N—— S
L =(a’) =hy  =py =pn3
B, (Bye (g = 1)” —3 + (i — o)’ (651)
————— e —

L =@ =) =)

Now, let us consider the difference between these two loss function. Since (a)

and (a’) are equivalent and (c) and (c’) are equivalent, we just need to consider
(b) and (b’):

Eo (§(x50) — fiy)” + 12 = Eoi® (5 0) — 21, Eo [§(x; 0)] +42 + 42 = Egj*(w;60) > 0.
—_—————

=fly

(6.52)

In other words, this tells us that the average loss over the predictors is always
greater than or equal to the loss of the average prediction by the predictors.
This motivates the idea of bagging [Breiman, 1996].

As long as we have ¢, or a sampler that draws predictors, or the correspond-
ing parameters, from this distribution ¢, bagging tells us that it is never a bad
idea to use many of those sampled predictors and average their predictions,
rather than using any one of them solely, on average. It turned out there are
many different ways that make our predictor # random rather than determin-
istic. We have already covered most of them earlier in the course, but let us
briefly go through them here once more.

In modern machine learning, a major source of randomness is the use of
stochastic gradient descent on a non-convex loss function. The loss function is
not convex w.r.t. the parameters, as we stack highly nonlinear blocks to build
a deep neural network based predictor, and in doing so, we introduce a large
degree of redundancies (or ambiguities). These ambiguities are more or less
arbitrarily resolved by randomness in stochastic gradient descent. For instance,
our choice of the initial values of the parameters affect a subspace over which
stochastic gradient descent can explore and find a local minimum. In addition to
initialization, there are other types of randomness in stochastic gradient descent,
that is, how we construct minibatches by selecting random subsets of the training
set. Furthermore, quite a few building blocks are inherently stochastic. Recall
the variational autoencoder from §4.3.1, where we injected noise for processing
each and every instance during training. In other words, we can think of the
resulting solution by running stochastic gradient descent as a sample drawn
from some distribution implicitly defined by this process of learning.

Of course, another major source of randomness is the choice of the training
set. As we have discussed earlier in §2.4.3, we can imitate the randomness in
data collection even when we have a single set of data points drawn from the
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underlying distribution by the process of bootstrap resampling. Instead of using
the training set as it is, we can resample it to match its original size however by
resampling training examples with replacement. Each time, we use a different
resampled training set, we end up with a somewhat different solution which can
be considered a sample drawn from the distribution again implicitly defined by
the process of training set construction.

In summary, we should embrace stochasticity inherent in learning and data
collection in order to produce a set of distinct predictors and average their
predictions for each input. On average, this will give us a low-loss predictor,
thanks for the theory of bagging, above.

Bayesian machine learning. Our discussion so far has progressed assuming
that we are given this distribution ¢(#). When ¢(6) is given, bagging tells us that
we want to use the average prediction from many sampled predictors from ¢ to
build a lower-loss predictor on average. This however does not tell me anything
about how we can create this distribution ourselves, or what this distribution ¢
is.

It turned out that we can rely on probability to guide us in designing as well
as understanding this distribution ¢(6). This will resemble much what we have
done in §4, and if you did not have much trouble following that section, you
would not find it any confusing. Let us try to derive this ¢ distribution by first
treating the loss value on the training set of a single predictor # as the energy
function:

e(6;D) = > L(x;0), (6.53)

zeD

with a very generic loss function L.

We can interpret this energy function just like any other energy function
we have defined and used throughout the semester. We want the predictor
parametrized by 6 to be assigned a low energy value when it is good. The
goodness of the predictor is defined as how low the loss function this predictor
attains on the training set D.

We can now turn this energy function into the probability function using the
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Boltzmann formulation, as we have done over and over by now:

exp (*5 ZzeD L(z; 9))

woip.0) = fe eXP( BZIGD L(:E;H’)) do’ (6.54)
_ exp (—BL(x;6))

}JD Joexp (=8 ,cp L(x;0)) Ao’ (6.55)

- [ et [yoxp (L) da

b Jyexp (=BL(2;0)) Az’ [gexp (=B, cp L(x;6")) Ao’

L(z';0))da’  [g Jy exp (=BL(a";6')) dz'de’

)
)
_ Hp(xw, f){' exp ((

z€D f@ fX exp (—BL(z';¢")) dz'de’ f@ exp ( B> wen L(w; 9/)) de’
(6.57)
o), 5 —20
- xgap 00 Hx ep P(2']B) (6.58)

This is precisely the posterior distribution over 6, where we consider € to be a
random variable. It states that our belief (probability) of a particular parameter
configuration 6 is proportional to the product of the likelihood p(D|6,3) =
[I.cpp(x|0,3) and the prior belief of 6.

With this our updated (that is, posterior) belief over 6, we probably want
to marginalize § out when we make a prediction on a new instance a’ ¢ D:

p(2'|D, ) = /@ p(2'16, )g(6|D. 5)d6. (6.59)

This formulation tells us that we should sample many predictors according to
q(0|D, B) and average their predictions, just like bagging above:
| M
p(@'|D,B) = 57 ) p(a'0m, B), (6.60)
m=1

where 6, ~ q(0]D, ). In other words, if we follow the Bayes’ rule and think of
the loss function as an energy function of the parameter 6 given an individual
instance, we arrive at the conclusion that we should draw predictors from the
posterior distribution ¢(6|D, 3). This is a great property, since we now have a
good guideline on what we should do, although the inclusion of 5 here was quite
intentional, as it says that we still need some kind of hyperparameter search even
in so-called Bayesian machine learning.

Let us now connect this (log-)posterior distribution with what we have
learned so far by writing it as

logp(0|D, B) = Z logp(x|6, 8) + logp(8) — log Z(D, j3) (6.61)
zeD
=— B> L(x;0) +logp(d) —log Z'(D, B), (6.62)

zeD
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where we collect all terms that are constant w.r.t. 5 into log Z’.
By setting 8 = ﬁ, we end up with
—logp(0|D) = Z L(z;0) — log p(#) +const. (6.63)

‘D‘ xeD

=—logp*(0|D,a)

If we minimize this, that is, if we maximize the log-posterior, this is precisely
what we have already been doing all along. We look for the parameter configu-
ration @ that minimizes the average loss but use the regularizer to ensure that
we end up with a parameter that generalizes. The balance between these two
are determined by the constant a.

Since we can exactly compute the unnormalized posterior probability, we
can think of using an advanced sampling technique, based on Markov Chain
Monte Carlo methods, from §5.1.1 [Neal, 1996]. Unfortunately, this is often
computationally too costly, because we must evaluate the loss over the entire
training set D each time we evaluate the acceptance probability. After all, the
whole reason why we introduced stochastic gradient descent earlier was precisely
because it was too costly to evaluate the loss over the whole training set.

Fortunately, or obviously in retrospect, researchers have realized that stochas-
tic gradient descent, with some adjustments or sometimes without much of ad-
justment, draws samples from this particular posterior distribution [see, e.g.,
Welling and Teh, 2011]. A general idea behind these recent algorithms, or find-
ings, is that if we do not try to reduce the effect of noise, i.e. (b) in Eq. (2.87),
stochastic gradient descent will tend toward a local minimum but will not tend
to stay at the local minimum and jump out toward another local minimum.
These local minima correspond to modes of the posterior distribution. By col-
lecting all the parameter configurations visited by stochastic gradient descent,
or some subset of them via thinning, we call parameter samples approximately
according to the posterior distribution.

This view of stochastic gradient descent as a posterior sampler tells us one
more alternative to create a set of predictors for bagging. That is, we simply
run stochastic gradient descent, without annealing the learning rate toward
zero or while explicitly adding extra noise, and collect every once a while a
predictor, to form a set of predictors for bagging. This approach explains why it
has been successful to build a bag of deep neural networks to build an ensemble
classifier [Krizhevsky et al., 2012], because those were approximate samples from
the posterior distribution.

Gradient Boosting. Consider a regression problem in which the target is
y € R?, and the energy function is defined as

ell53),6) = 5lly — F: O] (6.64)

Let us imagine that we already have a trained predictor f(z;6) which is not
perfect. We want to fit another predictor g(z;¢’) in order to ensure that we can
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make better prediction on x. We can approach this by first defining an aggregate
predictor as

h(x;{0,0'}) = f(2:0) + ag(x;0), (6.65)

where a > 0. We can then write the energy function that includes h as

¢'([#:9],{0,0"}) = lly — h(; {0, 0'})|? (6.66)
=l (y — f(2:0)) —ag(a:0")[|*. (6.67)
—_———

(a)

We can minimize this energy function w.r.t. « and 6’ , which results in g that
complements the existing predictor f to minimize any remaining error by f.
This idea is often referred as boosting [Schapire, 1990], as it boosts the represen-
tational power of weak predictors by combining two weak predictors, here f and
g, to form a stronger predictor. This procedure can be repeated by considering
h as f and introducing yet another weak predictor g into the mix, until the
point at which a satisfyingly low level of the loss is achieved. Although we have
derived it in the context of a single example (x, y), it should be readily extended
to multiple example pairs.

By carefully inspecting (a), we realize that this term is the negative gradient
of Eq. (6.64) w.r.t. f(xz;0):

de
—=—(y - ;6)). 6.68
e ) (6.68)
Instead of e, which was equivalent to the loss, because it was formulated using
L2 distance, we can use a more generic loss 1(;[z,y]). We can then further
rewrite ¢’ as

¢ ([239),{0,0'}) o< || = V5l(0; [z, 9]) — ag(z; 0)]1%, (6.69)

where § = f(x;6) . By minimizing ¢’ w.r.t. 8’ and «, we effectively let g capture
the (scaled) negative gradient of the loss w.r.t. §.

As we have learned repeatedly over the course so far, the gradient is only
meaningful in some small neighbourhood. In other words, taking the full step in
the direction of the negative gradient may not necessarily decrease the overall
loss, and we must scale the gradient accordingly. We thus search for the right
step size by solving

miroll<{979,}§ ['Tvy])v (6'70)

Y=

where the loss [ is computed by comparing y and

g = f(x;0) +~vg(z;0). (6.71)

This procedure resembles the process of gradient descent from §2.3.2, and is
thereby referred to as gradient boosting [Friedman, 2001].
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Boosting does not specify how to estimate 8 and g (or equivalently ') at each
iteration, and it is up to the practitioner to decide which (weak) learner g they
use and which loss function ! they choose. Popular choices include decision trees
and kernel-based support vector machines. In this sense, this is not a learning
algorithm but more a meta-heuristics.

6.3 Meta-Learning

In the previous section §6.2, we learned that it is a good idea to average the
predictions from multiple models if we have a distribution ¢() over the models
(or predictors) rather than a single predictor. We then learned that Bayesian
machine learning tells us that this distribution should be conditioned on the
training set, resulting ¢(0|D), and that we can obtain this posterior distribution
following the Bayes’ rule:

q(0]1D) o p(0) 1] p(x10). (6.72)
xzeD

It is a fair question at this point whether we must follow this particular for-
mulation based on the Bayes’ rule. Perhaps there is a better way to map the
training set D to the posterior distribution over 6.

Let us assume that we have not one but multiple training set {Dl, D? ...,DM }7
corresponding to the M prediction tasks. For each training set, we can define a
so-called K-fold cross-validation loss as

K
m 1 m

Lrov(9:D™) =~ > > log[zp($|9)q (9|ng((%|DmH-‘rl):ak(\DmD;¢> de,

F=1o€D 0 o & 1D )

(6.73)

where oy, is the k-th permutation of the indices from 1 to |D™]|. To compute
this loss, we often partition the data D™ into K partitions. For each partition,
we use the rest of the partitions to train a predictor (or a set of predictors) and
use this predictor to compute the loss. We average these K loss values and use
it as a proxy to the generalization loss [Kohavi, 1995].

In this particular case above, this cross-validation loss is a function ¢ which
parameterizes the posterior distribution q over the parameters #. This parametriza-
tion effectively turns the posterior inference problem in Bayesian machine learn-
ing into building a predictor that maps a set of training data points into a dis-
tribution over the parameters, where this predictor is parametrized using 6. In
other words, we train a predictor that solves the posterior inference problem by
solving

M
1
in— S L . D™). 6.74
m(;anz::l Kov(e; D™) (6.74)
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In this case, we would call {Dl, R DM} a meta-training set.

Just like what we have seen earlier in §4, this K-fold cross-validation loss is
not easy to compute nor to minimize. Instead, we can use the same technique
from variational inference from earlier to minimize the upperbound to Lyicvy:

K B
1 1
Lgcv(é:D™) < =22 > > 52 logp(xl0"),  (6.75)
k=1zeD™ \ b=1
ok (Do) ([ 1D™I)
where 6° ~ ¢ (G‘DZ;([%ID’”H—H):M(\D”I); ) Since # is often continuous, we can

for instance compute the gradient of Lxcy w.r.t. ¢ with the reparametrization
trick as long as ¢ is differentiable w.r.t. ¢.

This is interesting, since we can be flexible about how we parametrize g,
and this ¢ is directly optimized to result in a distribution over € or a set of
0’s under which the predictive loss is minimal. In other words, ¢ is a learning
algorithm, and we are training a learning algorithm by minimizing the meta-
objective function in Eq. (6.74) w.r.t. q.

For instance, we can define ¢ implicitly by drawing a sample of the parame-
ters f from ¢ using just a few steps N of stochastic gradient descent, as opposed
to running it until convergence as from §2.3.2. In doing so, we can consider the
initialization 8y of the parameters as ¢. By minimizing the meta-objective func-
tion w.r.t. 6y, we are looking for the initialization of the parameters that are
optimal with N SGD steps. If the new training set after such meta-learning is
similar to the meta-training sets, we would expect that N SGD steps would be
enough if not optimal to obtain the best predictor. This approach was originally
proposed by [Finn et al., 2017] and called model-agnostic meta-learning.

Of course, we can completely forego of any iterative optimization when de-
signing ¢ and build a predictor that directly maps a set of training data points
D to the prediction on a new observation z’. In doing so, it is important to real-
ize that this predictor cannot simply take as input D but needs to model noise
in learning itself. This naturally calls for including latent variables z into this
predictor, just like how we did earlier with generative models in §4. In this case,
the posterior distribution ¢(6) is implicit, and we directly predict the predictive
probability by

p(2]D; 6) = /Z p(2]z: 62 )p= (2| D; 62)dz, (6.76)

where p, is the prior over z and we marginalize out z. This approach is often
referred as neural processes [Garnelo et al., 2018]. Because this marginalization
is often intractable, it is a common practice to approach it from variational
inference and learning which we learned already in §4.3.1.

Overall, these approaches are referred as meta-learning, since such a proce-
dure results in a predictor that knows how to learn to solve a problem given a
set of new examples. Meta-learning can then be used to solve not only learning
problems but also any kind of set-to-set problems, such as causal discovery and
statistical inference problems. This is an exciting and active area of research.
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6.4 Regression: Mixture Density Networks

Let e([z,y],0) be the energy function where y is not categorical with a small
number of categories.® Without loss of generality, let y € R?. We can turn this
into a probability density function by

Y )
Pl ) = e (el y50)) g (6.77)

Unlike the classification problem we saw in Eq. (2.30), it is extremely challenging
to compute the normalization constant in this case with a non-categorical v,
in general. In fact, this problem is identical to undirected graphical models,
such as restricted Boltzmann machines from §5.1, which requires costly MCMC
sampling [Boulanger-Lewandowski et al., 2012].

It is thus natural to consider the parametrization of the energy function so
that the normalization constant is automatically 1. We have already considered
one particular approach under this paradigm earlier in §4.3.1. With a latent
variable z (an unobserved variable), we can make it readily normalized:

. _ P eXp(—e([a:,y],z,H)) 5
pest) = [ 1) T o & (6.78)

If we choose the following parametrization of the energy function, we know how
to compute the normalization constant exactly, because we end up with the
Gaussian distribution over y given z and z:

el(z, ), 2,0) = glly — ula, = O (679

Unfortunately, this approach is not trivial either, as we must marginalize out the
latent variable z. This marginalization problem is not easily solvable in general,
and we often need to resort to an approximate approach, such as variational
inference [Chung et al., 2015].

Because y is often lower-dimensional than x , there is a tractable alternative
to these two intractable approaches. This approach constrains the latent variable
approach above so that |Z| < oo , that is, z can take one of only a few possible
values, i.e., Z = {1,2,...,K}. In that case, we can solve the marginalization
problem exactly and arrive at

plyla; 0) = %N (y; 1= (), 0% (2) 1) (6.80)
z=1
assuming
(4], 2,0) = ! ly — 1=(F(z:00); 6,)]2. (6.81)

202(F(x;0F);6,)

6 A categorical variable takes a value out of a small number of predefined possible values,
just like classification.
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This is exactly a mixture of Gaussians however conditioned on z. F(x;0p) is a
feature extractor of the input «, and this extractor is shared between p and o2.
We further assumed that the prior over the mixture components was uniform,
ie. p(z) = % This is not strictly necessary, but simply makes learning easier,
as we remove any extra parameters for computing the prior from the input z.

As long as p, and o? are differentiable w.r.t. 6, , 6, and 6 (collectively,
comprising 6,) we can train this predictor all together without having to rely on
some approximate marginalization by

0r 00, —*ZlogZ Nl/ (2, 02 (2™)). (6.82)

Such a predictor is called a mixture density network and outdates all the other
approaches above [Bishop, 1994].

A main special case of this mixture density network is when there is only
one mixture component, i.e. K = 1. In that case, this reduces to a more famil-
iar linear regression with the mean squared error loss function, assuming the
constant variance, i.e., 02(x) = c. Although this is a usual approach and also
what we did earlier when we derived backpropagation in §2.2.2, this approach
of a single mixture component has a major disadvantage is that there can only
be a single mode in the predictive distribution. This is particularly problematic
when the underlying true distribution has multiple local modes, as learning with
the criterion above would make this predicted distribution to be dispersed in
order to cover all those multiple modes of the true distribution, resulting in an
unnecessarily uncertain prediction with the probability mass concentrated on a
region of the output space that is relevant to where true modes are. By increas-
ing K beyond 1, we increase the chance of capturing the inherent uncertainty
in regression.

Although training can be done exactly, this does not imply that we can make
prediction readily with the mixture density network. Unless K = 1, there is no
analytical solution to

9(z) = arg maxlog ZN y; o (), 02 (2) 1) — log K. (6.83)

We can solve this problem by gradient descent which will find one of at most K
modes of this complex distribution or find a saddle point.

It however is unsatisfactory to return a single point estimate of the solution,
when we trained our predictor to capture the full distribution over the output
space. Rather, it may be desirable to return a set of possible values of the
outcome y that are within a credible region, following the procedure from §2.4.3.
This is particularly desirable, as we can readily draw as many independent
samples from the mixture of Gaussians. Once the samples {y1,...,yn} are
drawn, we score each sample with the mixture density network, which is again
trivial, resulting in {p1,...,par}. We can then fit a cumulative density function
on these scores and pick only those that are above a predefined threshold. These
selected outputs can be considered a credible set of outputs for z.
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6.5 Causality

A major limitation of all methods in this lecture note, perhaps except for rein-
forcement learning in §6.1, is that they all rely almost entirely on association, or
correlation. These algorithms all look for which patterns appear together with
which other patterns frequently within a given dataset.

Already in §2.2.2, this was apparent. For instance, recall the following update
rule for a linear block in Eq. (2.53):

o A
ﬁij = l‘ih]‘ — .Tih,j7 (684)
where we assume there was no nonlinearity, i.e. h} = 1. The first term decreases
the value of w;; toward the origin 0 if x; and the old, undesired value of the
j-th hidden neuron had the same sign.” The second term on the other hand
increases the value of u;; away from the origin if x; and the new, desirable h;
have the same sign. In other words, u;;, one of the many parameters of this
predictor, encodes how correlated the i-th dimension of the observation and the
j-th dimension of the hidden variable are with each other.

This is perfectly fine, if the goal is to capture such correlations and use them
to impute missing values, such as outputs associated with test-time observa-
tions. This is not enough however if we want to infer the causal relationship
among variables, because as we often say casually, “correlation does not imply
causation.”8

Let us dig slightly deeper into this statement and consider a few cases where
correlation exists but causation does not. The first case is when there exists an
unobserved confounder, where the confounder z is defined to affect both the
input  and the outcome y, such that

@

Both z and y are caused by this unobserved confounder z in this diagram,
and we can write down the marginal distribution over (z,y) as

zxmy>=1/p0dapwvnxadz (6.85)

It is relatively straightforward to see that this would not be factorized into the
product of p(z) and p(z), i.e.

/puvmwwm@mZ¢pumw» (6.86)

"We are following the opposite of the gradient direction.
8When we say this, we are referring to dependence by correlation, but unless it is technically
confusing, I will interchangeably use correlation and dependence in this section.
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unless
/@@vm@vm@m2=mw/5@vm@m4 (6.87)

which would imply that there is no edge going from z to x in the first place.

That we cannot factor p(z,y) into the product of the marginals of  and
y implies that x and y are dependent on each other. Equivalently, we can say
that « and y are correlated with each other (potentially nonlinearly.) They are
however unrelated to each other causally, since intervening on x would not cause
any change in y and vice versa.

An example of this case of an unobserved confounder can be found in driving.
If one is not aware of how driving works and only looks at the dashboard of a
car,’ it is easy to see that the turn indicator and the steering wheel angle
are highly correlated with each other, which may result in an incorrect causal
conclusion that the turn indicator causes the steering wheel to turn, or vice
versa. This is missing a big confounder that is a driver and their intention to
turn the car.

The second case is what we often referred to as confirmation bias. Consider
the following causal model:

In this case, * and y are independent of each other a priori. It is clear
that they are not causally related to each other, since manually setting one
of these to a particular value should not change the value taken by the other
variable. It is however interesting to observe that these two variables, x and y,
are suddenly dependent on each other, once we observe z. That is, under the
posterior distribution, z and y are not independent:

p(z)p(y)p(z|z, y)
a)p(y)p(zla’, y')da'dy’”

M%M@ZIM (6.88)

Because of p(z|x,y), we cannot factor p(z,y|z) into the product of two terms,
each of which depends only on either = or y. If we could, that would imply that
z is caused by either one of x or y (or neither.) The input and outcome are
correlated in this case, because we only selectively consider a subset of (z,y)
pairs that are associated with a particular value of z. This is thus also called a
selection bias.

Let us consider an example, where = corresponds to a burglary and y to an
earthquake. z is a house alarm. The house alarm goes off (z = 1) when either
there is burglary (z = 1) or there is an earthquake (y = 1). It is pretty safe for

9Tmagine you are collecting data from the car to build a self-driving model.
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now to assume that the chances of burglary and earthquake are pretty much
independent of each other. If you however hear that your alarm went off, that
is, if you condition on z = 1, burglary and earthquake are not independent
anymore, since I would be able to explain away the chance of burglary if I felt
earthquake myself. That is, what’s the chance that earthquake and burglary
happened together and triggered the alarm. Although there is no causal rela-
tionship between the earthquake and burglary, they are now correlated with
each other negatively because we are conditioned on alarm going off.

These cases emphasize the difference between association (correlation) and
causality. In order to capture causal relationships among variables and use them
to control the underlying system, we must use an extra set of assumptions and
tools to rule out non-causal associations, or so-called spurious correlations. Once
we are equipped with such tools, we can make machine learning more robust in
more realistic scenarios, for instance where the distribution from which obser-
vations are drawn shifts between training and test times. This is a fascinating
topic in machine learning and more broadly artificial intelligence, but is out
of the scope of this course. I suggest you check out my lecture note “A Brief
Introduction to Causal Inference in Machine Learning” [Cho, 2024] and then
move on to more in-depth materials on causal inference, causal discovery and
causal representation learning.
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