
CS 420 Spring 2019
Final Exam Solutions

Name:

Put all your answers on the test itself. Be sure to put your name above.

1. Using the method from class (which is the same as the method in Theo-
rem 1.47), give the state diagram for an NFA that recognizes the concate-
nation of the language recognized by the first automaton below with the
language recognized by the second automaton below.:

- -��
��

��
��

��
��

��
��

- -s t
ε

v w�
��

�
��
�
��b

��
��
�
��u ��

��
x

W

a

N

a

?
b

?

}

b

�

a

�

a

b

Answer:

-��
��

��
��

��
��

��
��

- -s t
ε

v w

�
��
�
��b

��
��

u ��
��

x

W

a

N

a

?
b

?

}

b

�

a

�

a

b

-

3

ε

ε

1

[10 points]

2

2. Apply the method from class that decides ECFG to the following CFG
and answer the questions below.

S → AbS|AW

T → TS|VWY

A → AT |SV a

V → aY bW |AT

W → aWX|aY
X → aX|ε
Y → bY |a

(a) List the terminals and variables you mark in the order they get
marked. (List each terminal and variable only the first time you
mark it. There is more than one possible order.)
a, b|X,Y |W |V |T

(b) Does the CFG belong to ECFG? Yes

(c) How does your answer to (b) follow from your answer to (a)? (You
must refer specifically to your answer in (a) when you answer this
question.)
S is not marked

[10 points]

3

3. Let G be the following Chomsky Normal Form grammar.

S → AB|BC|b
A → BA|CB|a|b
B → BA|c
C → CB|a

Here is a partially filled in table for the algorithm described in Theorem
7.16 to determine if a particular string belongs to L(G).

j
1 2 3 4 5

1 A,C A,C, S A,C, S ? ?
i 2 − B A,B, S A,B, S ?

3 − − A,C A,C, S A,C, S
4 − − − B A,B
5 − − − − A,S

(a) What is the string w for this table? (For this grammar, you can tell
just by looking at the table.)
acacb

(b) What are the three missing entries in the table? Give complete an-
swers.

table(1, 4) = A,C, S

table(2, 5) = A,B, S

table(1, 5) = A,C, S

(c) Is w in L(G)? Yes

(d) How does your answer to (c) follow from your answer to (b)?
S ∈ table(1, 5)

[10 points]

4

4. Let G be the grammar

S → WbT

T → aWbT |bV aT |ε
W → aWbW |ε
V → bV aV |ε

(a) Give a leftmost derivation of the string aabbbbaab in G. (It may help
you to know that L(G) is the set of strings w over {a, b} that have
exactly one more b than a, that T generates the set of strings with
the same number of a’s as b’s, Wgenerates the set of strings with
the same number of a’s as b’s that also have the property that every
prefix of the string has at least as many a’s as b’s, and V generates
the strings with the same number of a’s as b’s such that every prefix
of the string has at least as many b’s as a’s.) Do not combine steps.
Your derivation should have 11 steps.

Answer:

S ⇒WbT ⇒ aWbWbT ⇒ aaWbWbWbT ⇒ aabWbWbT
⇒ aabbWbT ⇒ aabbbT ⇒ aabbbbV aT ⇒ aabbbbaT
⇒ aabbbbaaWbT ⇒ aabbbbaabT ⇒ aabbbbaab

5

(b) Using the procedure given in Theorem 2.20, give a PDA equivalent
to G. (You may use moves that push more than one symbol onto the
stack.)

Answer:

"!

"!

-

?

?

z 9

qstart

ε, ε→ S$

qloop

ε, $→ ε

ε, S → WbT
ε, T → aWbT
ε, T → bV aT
ε, T → ε
ε,W → aWbW
ε,W → ε
ε, V → bV aV
ε, V → ε

qaccept��
��

a, a → ε
b, b → ε

[10 points]

6

5. Let M be the NFA given by

��
��

��
��

��
��

��
��

-q1 q2

q3 q4

-
a

��
��
��
��W

a

3

b

?

b

� ε

a
6

a
1

(a) If you want to transform M into an equivalent regular expression, you
have to first modify M into a GNFA M ′ before you start eliminating
states. Give the state diagram of this GNFA M ′. (You are not being
asked to eliminate any states. Just give the GNFA M ′ that you first
transform M into.) Do not give transitions labeled with ∅.
Answer:

��
��

��
��

��
��

��
��

��
��

��
��

-q1 q2

q3 q4

-
a

��
��

W

a

3

b

?

b

� ε

a
6

a
1

-

~

3

ε

ε

ε

qs

qa

7

(b) Suppose that at some point while transforming an NFA into a regular
expression you have the following GNFA.

��
��
��
����

��

��
�� �
��-

3
~

�

~

6

?

?

�

qs

p

r

qa

ab∗

ab ∪ ba

ε

ba∗

b

ab ∪ a ba

b ∪ ε

Show the GNFA you would get from this one by eliminating state
p. (You are not being asked to convert the GNFA into a regular
expression. Just eliminate the state p.)

Answer:

��
��

��
�� �
��- qs qa-

ab∗(ab ∪ ba)∗

��
��

�
�
�
�
�
���

^

r

?

ba(ab ∪ ba)∗(ab ∪ a) ∪ b

ab∗(ab ∪ ba)∗(ab ∪ a) ∪ ba∗
ba(ab ∪ ba)∗ ∪ b ∩ ε

[10 points]

8

6. Let M be the PDA given by:

��
��

��
��
��
��

��
��

��
���
��
�
�� �
��- -

? ?

�

-

=

? W

�

0, ε→ ∗

0, ε→ 0

1, 0→ ε

1, 0→ ε

1, ε→ ε 1, ∗ → ε

1, ∗ → ε

1, ε→ ε

1, ε→ ε

(a) Does M accept the string 11? Yes

(b) Does M accept the string 001? Yes

(c) Does M accept the string 0011? No

(d) Does M accept the string 00111? Yes

(e) What is the language recognized by M?

Answer:

{0n1m|n 6= m}

9

(f) If you want to convert the PDA M into a context-free grammar, then
the first thing you have to do is transform M into another PDA M ′.
Give this PDA M ′. (You are not being asked to transform M into a
CFG. Just give the PDA M ′.)

Answer:

��
��

��
��

��
��
��
��

��
��

��
��

��
��

�
��

- -

? ?

�

-

=

? W
0, ε→ ∗

0, ε→ 0

1, 0→ ε

1, 0→ ε

1, ε→ $ 1, ∗ → ε 1, ∗ → ε

1, ε→ $

?

6
ε, $→ ε 1, ε→ $

:

?
�

ε, ε→ #

ε, ε→ #

ε, ε→ #

y
ε,# → ε
ε, 0 → ε

10

(g) Suppose you are converting a PDA into a CFG and the only moves
in the PDA that involve the stack symbol 0 are the following:

��
��

��
����
����
��

��
��

��
��

��
��

-

-

t

u

v

1, 0→ ε

s

p

q
ε, ε→ 0

r

w

-ε, 0→ ε

0, ε→ 0

The grammar will contain four rules corresponding to the different
ways to push and pop a 0. What are these four rules?

Answer:

Apt → 0Aps

Apw → 0Apu1
Aqt → Ars

Aqw → Aru1

[13 points]

11

7. Show that the following grammar is ambiguous. (The grammar generates
the same language as the grammar given in Problem 4)

S → TbT

T → aTbT |bTaT |ε

Answer:

The string bab has the following two leftmost derivations, so the grammar
is ambiguous.

S ⇒ TbT ⇒ bTaTbT ⇒ baTaT ⇒ babT ⇒ bab

and

S ⇒ TbT ⇒ bT ⇒ baTbT ⇒ babT ⇒ bab

[7 points]

12

8. Let A be the language {u ∈ {a, b}∗|u has more than twice as many a’s as
b’s}. The following Turing machine T decides the language A. Some parts
of the definition are left blank and you will be asked to fill in these parts.

T =“On input w

1. Repeat as long as there are A© left on the tape.

2. Scan the tape and cross off B© .

3. If there are C© left on the tape accept, else reject.”

(a) Fill in each of the blanks in the definition of T , in such a way that T
decides A in time O(n2).

A© At least two a’s and one b

B© Two a’s and one b

C© At least one a and no b’s

13

(b) Give an implementation-level description of a multi-tape Turing ma-
chine that decides A in time O(n). (You do not need to explain why
the running time is O(n).)

Answer:

M = “On input w

1. Scan tape 1. For each a read, write one a on tape 2 and for each
b read, write two b’s on tape 3.

2. Return to the first cells on tapes 2 and 3.

3. Scan tapes 2 and 3. If a blank is reached on both tapes at the
same time, accept, else reject.”

[10 points]

14

9. A path in an undirected graph is called simple if there are no repeated
vertices on the path. Let LONGEST − PATH = {〈G, s, t, k〉|G is an
undirected graph, s and t are vertices of G and there is a simple path
from s to t of length ≥ k}.
Show that LONGEST − PATH is in NP.

Answer:

LONGEST −PATH is decided by the following nondeterministic Turing
machine:

N =“On input 〈G, s, t, k〉 where G is an undirected graph, s and t are
vertices of G and k is a number:

1. Let G have m vertices.

2. If k ≥ m, reject.

3. Guess a sequence p1, p2, . . . pn of vertices of G, where k < n ≤ m.

4. Check that there are no repeated vertices in the list.

5. Check that p1 = s and pn = t.

6. Check that for each i, 1 ≤ i < n, (pi, pi+1) is an edge of G.

7. If all checks are passed, accept, else reject.”

Each step is executed once. In Step 6, checking each pair (pi, pi+1) requires
at most examining each edge of the graph once, and there are no more
than m− 1 pairs to check, so this step can be implemented in polynomial
time, as can all the others, so N runs in polynomial time. [6 points]

15

10. In class, we gave an algorithm to convert a non-deterministic finite au-
tomaton N into a deterministic finite automaton M . (This is the same
algorithm as the one in the proof of Theorem 1.39.)

(a) Does this algorithm run in polynomial time? (Assume that the al-
gorithm has to produce the whole DFA M defined in the algorithm,
not just the reachable part.)

Yes
No X

(b) Explain your answer in (a).

Answer:

If N has m states, then the full DFA M has 2m states, so M cannot
be produced in polynomial time from N .

[6 points]

16

11. Prove that if the language {0k1k|k ≥ 0} is NP complete, then P = NP .
[You may use results in the book without proof.]

Answer:

Let L = {0k1k|k ≥ 0} and suppose that L is NP complete. Since L
is a context-free language, by Theorem 7.16, L is in P . But then, by
Theorem 7.35, P = NP .

[4 points]

17

12. Let S = {f : N → N| for all N , f(n) diivides f(n + 1) evenly}. (“f(n)
divides f(n+1) evenly” means that for some natural number k, f(n+1) =
kf(n). The number k can be different for different n.)

Use diagonalization to show that S is an uncountable set.

Answer:

Let f1, f2, f3, . . . be a sequence of elements of S. Define a function d by

d(1) = f1(1) + 1

and

d(n + 1) =

{
d(n) if d(n) 6= fn+1(n + 1)
2d(n) if d(n) = fn+1(n + 1)

Then for all n, d(n + 1) is either d(n) or 2d(n), so d(n) divides d(n + 1)
evenly for all n, which means that d is in S.

Since we do not consider 0 to be a natural number, 2d(n) 6= d(n) no
matter what natural number d(n) is, so d(n + 1) 6= fn+1(n + 1) for all n,
and d(1) 6= f1(1), so d is different from all the fn’s. This proves that S is
uncountable. [4 points]

18

